Oğuzhan Kurnaz;Jagabandhu Mishra;Tomi H. Kinnunen;Cemal Hanilçi
{"title":"Optimizing a-DCF for Spoofing-Robust Speaker Verification","authors":"Oğuzhan Kurnaz;Jagabandhu Mishra;Tomi H. Kinnunen;Cemal Hanilçi","doi":"10.1109/LSP.2025.3545290","DOIUrl":null,"url":null,"abstract":"Automatic speaker verification (ASV) systems are vulnerable to spoofing attacks. We propose a spoofing-robust ASV system optimized directly for the recently introduced architecture-agnostic detection cost function (a-DCF), which allows targeting a desired trade-off between the contradicting aims of user convenience and robustness to spoofing. We combine a-DCF and binary cross-entropy (BCE) with a novel straightforward threshold optimization technique. Our results with an embedding fusion system on ASVspoof2019 data demonstrate relative improvement of 13% over a system trained using BCE only (from minimum a-DCF of 0.1445 to 0.1254). Using an alternative non-linear score fusion approach provides relative improvement of 43% (from minimum a-DCF of 0.0508 to 0.0289).","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1081-1085"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902026/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic speaker verification (ASV) systems are vulnerable to spoofing attacks. We propose a spoofing-robust ASV system optimized directly for the recently introduced architecture-agnostic detection cost function (a-DCF), which allows targeting a desired trade-off between the contradicting aims of user convenience and robustness to spoofing. We combine a-DCF and binary cross-entropy (BCE) with a novel straightforward threshold optimization technique. Our results with an embedding fusion system on ASVspoof2019 data demonstrate relative improvement of 13% over a system trained using BCE only (from minimum a-DCF of 0.1445 to 0.1254). Using an alternative non-linear score fusion approach provides relative improvement of 43% (from minimum a-DCF of 0.0508 to 0.0289).
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.