Berenice Zapata-Norberto , Eric Morales-Casique , René Contreras-Galván , José A. Ramos-Leal
{"title":"Land subsidence in Mexico City: New insights from field data and numerical modeling","authors":"Berenice Zapata-Norberto , Eric Morales-Casique , René Contreras-Galván , José A. Ramos-Leal","doi":"10.1016/j.gsd.2025.101432","DOIUrl":null,"url":null,"abstract":"<div><div>Water supply to Mexico City relies mainly on groundwater from a regional aquifer overlain by highly compressible lacustrine sediments. Intensive pumping has originated land subsidence, threatening water supply and damaging urban infrastructure. A research site where the thickness of the aquitard reaches 100 m, was instrumented with piezometers, benchmarks and extensometers and monitored for 10 years. Data are analyzed to understand the main drivers and quantify their contribution to the process of land subsidence in Mexico City. Total settlement amounted to 3.661 m, at an average rate of 0.314 m/year. Increase in total stress due to new infrastructure built near the site (a highway) at the start of the monitoring period amounts for 35% of the observed total settlement; this deformation takes place from 0 to 36 m within the aquitard, where pore pressure maintained a hydrostatic distribution. Our analysis shows that the main driver for land subsidence is groundwater pumping from the regional aquifer as most of the deformation due to consolidation (2.128 m) was registered below a depth of 82 m. Since the thickness of the aquitard at the research site is 100 m, numerical simulation shows that most of this deformation most probably takes place at interbedded compressible lenses within the regional aquifer. Future modeling efforts in Mexico City need to consider this process.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101432"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X25000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water supply to Mexico City relies mainly on groundwater from a regional aquifer overlain by highly compressible lacustrine sediments. Intensive pumping has originated land subsidence, threatening water supply and damaging urban infrastructure. A research site where the thickness of the aquitard reaches 100 m, was instrumented with piezometers, benchmarks and extensometers and monitored for 10 years. Data are analyzed to understand the main drivers and quantify their contribution to the process of land subsidence in Mexico City. Total settlement amounted to 3.661 m, at an average rate of 0.314 m/year. Increase in total stress due to new infrastructure built near the site (a highway) at the start of the monitoring period amounts for 35% of the observed total settlement; this deformation takes place from 0 to 36 m within the aquitard, where pore pressure maintained a hydrostatic distribution. Our analysis shows that the main driver for land subsidence is groundwater pumping from the regional aquifer as most of the deformation due to consolidation (2.128 m) was registered below a depth of 82 m. Since the thickness of the aquitard at the research site is 100 m, numerical simulation shows that most of this deformation most probably takes place at interbedded compressible lenses within the regional aquifer. Future modeling efforts in Mexico City need to consider this process.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.