{"title":"Load optimization of cogeneration units based on intuitive multi-objective fish swarm algorithm","authors":"Xueqiang Shen, Jiaxin Wang","doi":"10.1016/j.ijepes.2025.110595","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the multi-objective optimization challenges in seasonal heat-power load distribution for cogeneration units by proposing a multi-objective artificial fish swarm algorithm based on intuitionistic fuzzy entropy (IFEMOAFSA). The algorithm enhances the original intuitionistic fuzzy entropy framework, integrating membership, non-membership, and hesitation degrees to guide fish swarm behavior. It dynamically categorizes swarm particles into three states, improving solution space coverage and priority-based solution identification. Convergence direction is adaptively adjusted using intuitionistic fuzzy entropy, with Pareto frontier solutions determining optimal load allocation. Evaluated via the Zitzler-Deb-Thiele (ZDT) benchmark functions, IFEMOAFSA achieves a 42.63% comprehensive performance improvement over four benchmark algorithms, verified by Mean Inverted Generational Distance (MIGD) and Mean Hypervolume Metric (MHV). A cogeneration unit model incorporating operational characteristics and historical data demonstrates the method’s efficacy: multi-objective balance is maintained across iterations, achieving a 1.41% thermoelectric load increase and 1.54% optimal coal consumption reduction. The algorithm reduces heat/electricity losses and operational costs under diverse conditions while enhancing load utilization rates. These results validate IFEMOAFSA’s effectiveness in solving annual load optimization challenges for cogeneration systems, showing promising applications for similar multi-objective optimization problems requiring dynamic adaptability and robust convergence properties.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110595"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001462","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the multi-objective optimization challenges in seasonal heat-power load distribution for cogeneration units by proposing a multi-objective artificial fish swarm algorithm based on intuitionistic fuzzy entropy (IFEMOAFSA). The algorithm enhances the original intuitionistic fuzzy entropy framework, integrating membership, non-membership, and hesitation degrees to guide fish swarm behavior. It dynamically categorizes swarm particles into three states, improving solution space coverage and priority-based solution identification. Convergence direction is adaptively adjusted using intuitionistic fuzzy entropy, with Pareto frontier solutions determining optimal load allocation. Evaluated via the Zitzler-Deb-Thiele (ZDT) benchmark functions, IFEMOAFSA achieves a 42.63% comprehensive performance improvement over four benchmark algorithms, verified by Mean Inverted Generational Distance (MIGD) and Mean Hypervolume Metric (MHV). A cogeneration unit model incorporating operational characteristics and historical data demonstrates the method’s efficacy: multi-objective balance is maintained across iterations, achieving a 1.41% thermoelectric load increase and 1.54% optimal coal consumption reduction. The algorithm reduces heat/electricity losses and operational costs under diverse conditions while enhancing load utilization rates. These results validate IFEMOAFSA’s effectiveness in solving annual load optimization challenges for cogeneration systems, showing promising applications for similar multi-objective optimization problems requiring dynamic adaptability and robust convergence properties.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.