Load optimization of cogeneration units based on intuitive multi-objective fish swarm algorithm

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueqiang Shen, Jiaxin Wang
{"title":"Load optimization of cogeneration units based on intuitive multi-objective fish swarm algorithm","authors":"Xueqiang Shen,&nbsp;Jiaxin Wang","doi":"10.1016/j.ijepes.2025.110595","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the multi-objective optimization challenges in seasonal heat-power load distribution for cogeneration units by proposing a multi-objective artificial fish swarm algorithm based on intuitionistic fuzzy entropy (IFEMOAFSA). The algorithm enhances the original intuitionistic fuzzy entropy framework, integrating membership, non-membership, and hesitation degrees to guide fish swarm behavior. It dynamically categorizes swarm particles into three states, improving solution space coverage and priority-based solution identification. Convergence direction is adaptively adjusted using intuitionistic fuzzy entropy, with Pareto frontier solutions determining optimal load allocation. Evaluated via the Zitzler-Deb-Thiele (ZDT) benchmark functions, IFEMOAFSA achieves a 42.63% comprehensive performance improvement over four benchmark algorithms, verified by Mean Inverted Generational Distance (MIGD) and Mean Hypervolume Metric (MHV). A cogeneration unit model incorporating operational characteristics and historical data demonstrates the method’s efficacy: multi-objective balance is maintained across iterations, achieving a 1.41% thermoelectric load increase and 1.54% optimal coal consumption reduction. The algorithm reduces heat/electricity losses and operational costs under diverse conditions while enhancing load utilization rates. These results validate IFEMOAFSA’s effectiveness in solving annual load optimization challenges for cogeneration systems, showing promising applications for similar multi-objective optimization problems requiring dynamic adaptability and robust convergence properties.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110595"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001462","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the multi-objective optimization challenges in seasonal heat-power load distribution for cogeneration units by proposing a multi-objective artificial fish swarm algorithm based on intuitionistic fuzzy entropy (IFEMOAFSA). The algorithm enhances the original intuitionistic fuzzy entropy framework, integrating membership, non-membership, and hesitation degrees to guide fish swarm behavior. It dynamically categorizes swarm particles into three states, improving solution space coverage and priority-based solution identification. Convergence direction is adaptively adjusted using intuitionistic fuzzy entropy, with Pareto frontier solutions determining optimal load allocation. Evaluated via the Zitzler-Deb-Thiele (ZDT) benchmark functions, IFEMOAFSA achieves a 42.63% comprehensive performance improvement over four benchmark algorithms, verified by Mean Inverted Generational Distance (MIGD) and Mean Hypervolume Metric (MHV). A cogeneration unit model incorporating operational characteristics and historical data demonstrates the method’s efficacy: multi-objective balance is maintained across iterations, achieving a 1.41% thermoelectric load increase and 1.54% optimal coal consumption reduction. The algorithm reduces heat/electricity losses and operational costs under diverse conditions while enhancing load utilization rates. These results validate IFEMOAFSA’s effectiveness in solving annual load optimization challenges for cogeneration systems, showing promising applications for similar multi-objective optimization problems requiring dynamic adaptability and robust convergence properties.
本研究通过提出一种基于直觉模糊熵的多目标人工鱼群算法(IFEMOAFSA),解决了热电联产机组季节性热电负荷分配中的多目标优化难题。该算法增强了原有的直觉模糊熵框架,整合了成员度、非成员度和犹豫度来指导鱼群行为。该算法将鱼群粒子动态地分为三种状态,从而提高了解空间覆盖率和基于优先级的解识别能力。收敛方向通过直觉模糊熵进行自适应调整,帕累托前沿解决方案决定了最优负载分配。通过 Zitzler-Deb-Thiele (ZDT) 基准函数进行评估,IFEMOAFSA 的综合性能比四种基准算法提高了 42.63%,并通过平均倒代距离 (MIGD) 和平均超体积度量 (MHV) 进行了验证。一个包含运行特征和历史数据的热电联产机组模型证明了该方法的有效性:在迭代过程中保持了多目标平衡,实现了 1.41% 的热电负荷增长和 1.54% 的最佳煤耗降低。该算法降低了各种条件下的热能/电力损失和运行成本,同时提高了负荷利用率。这些结果验证了 IFEMOAFSA 在解决热电联产系统年度负荷优化难题方面的有效性,并显示出其在需要动态适应性和稳健收敛特性的类似多目标优化问题上的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信