Development of CH3COONa·3H2O-Glycine-KCl composite phase change material for the swimming pool heating system

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Tao Xu , Fuyu Qin , Jiaming Zhang , Zhidong Li , Shen Wei , Lingzhi Zhong , Yue Han , Ximin Lin , Junyi Wei , Yi Yang , Weitao Shao
{"title":"Development of CH3COONa·3H2O-Glycine-KCl composite phase change material for the swimming pool heating system","authors":"Tao Xu ,&nbsp;Fuyu Qin ,&nbsp;Jiaming Zhang ,&nbsp;Zhidong Li ,&nbsp;Shen Wei ,&nbsp;Lingzhi Zhong ,&nbsp;Yue Han ,&nbsp;Ximin Lin ,&nbsp;Junyi Wei ,&nbsp;Yi Yang ,&nbsp;Weitao Shao","doi":"10.1016/j.solmat.2025.113574","DOIUrl":null,"url":null,"abstract":"<div><div>With the improvement of modern living standards, the number of indoor and outdoor swimming pools has increased. However, the high energy consumption and heating costs in winter do not align with the requirements of green development. Therefore, in this study, a novel Composite Phase Change Material (CPCM) was developed to be integrated with a solar-air source heat pump swimming pool heating system. This system aims to provide longer heating durations and reduce temperature fluctuations, while also alleviating the pressure on national energy supply during peak energy consumption. Glycine (Gly) and potassium chloride (KCl) were combined with sodium acetate trihydrate (SAT) to prepare a shape-stabilized CPCM (SAT- Gly- KCl CPCM). It was integrated into a swimming pool heating system to justify the impact of the new material. Experimental results have demonstrated some major properties of this material, the melting point, latent heat value and supercooling degree were 40.3 °C, 274.4 J/g and 1.36 °C for the laboratory preparation, and 40.9 °C, 249.5 J/g and 1.42 °C for the large-scale preparation, respectively. The material also exhibited good stability and thermal reliability. When SAT-Gly-KCl CPCM was applied to a swimming pool heating system, it was found that 100 and 200 phase change thermal storage modules increased heating durations by 9.89 and 10.59 times, respectively, compared to the control group. Therefore, the SAT-Gly-KCl CPCM presents a promising solution for swimming pool heating systems. This study contributes to the further development and application of CPCMs in such systems, offering improved energy efficiency and stability.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113574"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001758","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the improvement of modern living standards, the number of indoor and outdoor swimming pools has increased. However, the high energy consumption and heating costs in winter do not align with the requirements of green development. Therefore, in this study, a novel Composite Phase Change Material (CPCM) was developed to be integrated with a solar-air source heat pump swimming pool heating system. This system aims to provide longer heating durations and reduce temperature fluctuations, while also alleviating the pressure on national energy supply during peak energy consumption. Glycine (Gly) and potassium chloride (KCl) were combined with sodium acetate trihydrate (SAT) to prepare a shape-stabilized CPCM (SAT- Gly- KCl CPCM). It was integrated into a swimming pool heating system to justify the impact of the new material. Experimental results have demonstrated some major properties of this material, the melting point, latent heat value and supercooling degree were 40.3 °C, 274.4 J/g and 1.36 °C for the laboratory preparation, and 40.9 °C, 249.5 J/g and 1.42 °C for the large-scale preparation, respectively. The material also exhibited good stability and thermal reliability. When SAT-Gly-KCl CPCM was applied to a swimming pool heating system, it was found that 100 and 200 phase change thermal storage modules increased heating durations by 9.89 and 10.59 times, respectively, compared to the control group. Therefore, the SAT-Gly-KCl CPCM presents a promising solution for swimming pool heating systems. This study contributes to the further development and application of CPCMs in such systems, offering improved energy efficiency and stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信