Pengzhen Zhuang , Yu Chen , Yu Zhang , Wu Yang , Guilai Zuo , Jessica M. Rosenholm , Zhongmin Wang , Juan Wang , Wenguo Cui , Hongbo Zhang
{"title":"Regulating macrophage glucose metabolism homeostasis via mitochondrial rheostats by short fiber-microsphere scaffolds for bone repair","authors":"Pengzhen Zhuang , Yu Chen , Yu Zhang , Wu Yang , Guilai Zuo , Jessica M. Rosenholm , Zhongmin Wang , Juan Wang , Wenguo Cui , Hongbo Zhang","doi":"10.1016/j.bioactmat.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>The alterations in glucose metabolism flux induced by mitochondrial function changes are crucial for regulating bone immune homeostasis. The restoration of mitochondrial homeostasis, serving as a pivotal rheostat for balancing glucose metabolism in immune cells, can effectively mitigate inflammation and initiate osteogenesis. Herein, an ion-activated mitochondrial rheostat fiber-microsphere polymerization system (FM@CeZnHA) was innovatively constructed. Physical-chemical and molecular biological methods confirmed that CeZnHA, characterized by a rapid degradation rate, releases Ce/Zn ions that restore mitochondrial metabolic homeostasis and M1/M2 balance of macrophages through swift redox reactions. This process reduces the glycolysis level of macrophages by down-regulating the NF-κB p65 signaling pathway, enhances their mitochondrial metabolic dependence, alleviates excessive early inflammatory responses, and promptly initiates osteogenesis. The FM network provided a stable platform for macrophage glycolytic transformation and simulated extracellular matrix microenvironment, continuously restoring mitochondrial homeostasis and accelerating ossification center formation through the release of metal ions from the internal CeZnHA for efficient bone immune cascade reactions. This strategy of bone immunity mediated by the restoration of macrophage mitochondrial metabolic function and glucose metabolic flux homeostasis opens up a new approach to treating bone defects.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"49 ","pages":"Pages 399-417"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001100","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The alterations in glucose metabolism flux induced by mitochondrial function changes are crucial for regulating bone immune homeostasis. The restoration of mitochondrial homeostasis, serving as a pivotal rheostat for balancing glucose metabolism in immune cells, can effectively mitigate inflammation and initiate osteogenesis. Herein, an ion-activated mitochondrial rheostat fiber-microsphere polymerization system (FM@CeZnHA) was innovatively constructed. Physical-chemical and molecular biological methods confirmed that CeZnHA, characterized by a rapid degradation rate, releases Ce/Zn ions that restore mitochondrial metabolic homeostasis and M1/M2 balance of macrophages through swift redox reactions. This process reduces the glycolysis level of macrophages by down-regulating the NF-κB p65 signaling pathway, enhances their mitochondrial metabolic dependence, alleviates excessive early inflammatory responses, and promptly initiates osteogenesis. The FM network provided a stable platform for macrophage glycolytic transformation and simulated extracellular matrix microenvironment, continuously restoring mitochondrial homeostasis and accelerating ossification center formation through the release of metal ions from the internal CeZnHA for efficient bone immune cascade reactions. This strategy of bone immunity mediated by the restoration of macrophage mitochondrial metabolic function and glucose metabolic flux homeostasis opens up a new approach to treating bone defects.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.