Shuyi Xiang , Longkun Lu , Zhibo Du , Kaijie Wang , Zhanli Liu
{"title":"Indentation of freestanding pre-stressed films: Extracting elastic modulus and pre-tension, elucidating finite-sized indenter effect","authors":"Shuyi Xiang , Longkun Lu , Zhibo Du , Kaijie Wang , Zhanli Liu","doi":"10.1016/j.ijmecsci.2025.110141","DOIUrl":null,"url":null,"abstract":"<div><div>The indentation test is an important method for characterizing the mechanical properties of solid films. However, how to extract the elastic modulus of pre-stressed circular films through the indentation test is still debatable due to the transition between linear membrane, nonlinear membrane, and plate behavior. This study proposes a method for extracting elastic modulus and pre-tension of freestanding film simultaneously by integrating an indentation test and theoretical modeling. Firstly, we introduce the experimental setting and results of polydimethylsiloxane (PDMS) films. The theoretical model for the cylindrical indentation of freestanding circular film is then presented, considering the combined contribution of pre-tension, additional stretching, and bending stiffness to mechanical response. After that, the elastic modulus and pre-tension are extracted by iteratively solving the full governing equations until the difference between numerical and experimental load-deflection curves is minimized. The asymptotic results derived from the full governing equations are compared with classical asymptotic solutions in the linear membrane, nonlinear membrane, and plate regimes to verify the theoretical modeling. Finally, the explicit indentation force-depth formula for the finite-sized indenter is proposed. The underlying mechanism of the synergistic effect of pre-tension, additional stretching and bending stiffness on indentation behavior in the transition region is elucidated.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110141"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002279","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The indentation test is an important method for characterizing the mechanical properties of solid films. However, how to extract the elastic modulus of pre-stressed circular films through the indentation test is still debatable due to the transition between linear membrane, nonlinear membrane, and plate behavior. This study proposes a method for extracting elastic modulus and pre-tension of freestanding film simultaneously by integrating an indentation test and theoretical modeling. Firstly, we introduce the experimental setting and results of polydimethylsiloxane (PDMS) films. The theoretical model for the cylindrical indentation of freestanding circular film is then presented, considering the combined contribution of pre-tension, additional stretching, and bending stiffness to mechanical response. After that, the elastic modulus and pre-tension are extracted by iteratively solving the full governing equations until the difference between numerical and experimental load-deflection curves is minimized. The asymptotic results derived from the full governing equations are compared with classical asymptotic solutions in the linear membrane, nonlinear membrane, and plate regimes to verify the theoretical modeling. Finally, the explicit indentation force-depth formula for the finite-sized indenter is proposed. The underlying mechanism of the synergistic effect of pre-tension, additional stretching and bending stiffness on indentation behavior in the transition region is elucidated.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.