Hao Sun , Meng Qi , Ming Yang , Fuyu Wang , Heping Wang
{"title":"Multiparametric resilience assessment of chemical process systems incorporating process dynamics and independent protection layers","authors":"Hao Sun , Meng Qi , Ming Yang , Fuyu Wang , Heping Wang","doi":"10.1016/j.psep.2025.107018","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical Process Systems (CPSs) exhibit complex characteristics and inherent dangers that can lead to serious accidents when disrupted. Accurate quantification and assessment of system resilience are crucial for effectively responding to potential undesired events. To address this, we propose a multiparametric resilience assessment methodology for CPSs that considers system dynamics and Independent Protection Layers (IPLs). This method integrates multiple CPS parameters using the Best Worst Method (BWM) to establish a comprehensive performance indicator. A dynamic simulation model incorporating IPLs is developed to monitor real-time changes in system parameters under disruptive influences. Additionally, a resilience metric is introduced, utilizing time-varying parameters to quantify system resilience under various disruptions. A case study involving a two-column pressure-swing distillation process with top recycling, designed to separate a minimum-boiling azeotrope of tetrahydrofuran and water, demonstrates the applicability of this method to complex CPSs. The results indicate that, compared to traditional resilience assessment methods based on reliability, the proposed approach provides time-dependent process parameters, reducing the uncertainty of reliability data. Furthermore, by considering IPLs, this method offers valuable decision support for the design and optimization of these protective layers.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"197 ","pages":"Article 107018"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095758202500285X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical Process Systems (CPSs) exhibit complex characteristics and inherent dangers that can lead to serious accidents when disrupted. Accurate quantification and assessment of system resilience are crucial for effectively responding to potential undesired events. To address this, we propose a multiparametric resilience assessment methodology for CPSs that considers system dynamics and Independent Protection Layers (IPLs). This method integrates multiple CPS parameters using the Best Worst Method (BWM) to establish a comprehensive performance indicator. A dynamic simulation model incorporating IPLs is developed to monitor real-time changes in system parameters under disruptive influences. Additionally, a resilience metric is introduced, utilizing time-varying parameters to quantify system resilience under various disruptions. A case study involving a two-column pressure-swing distillation process with top recycling, designed to separate a minimum-boiling azeotrope of tetrahydrofuran and water, demonstrates the applicability of this method to complex CPSs. The results indicate that, compared to traditional resilience assessment methods based on reliability, the proposed approach provides time-dependent process parameters, reducing the uncertainty of reliability data. Furthermore, by considering IPLs, this method offers valuable decision support for the design and optimization of these protective layers.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.