Regulation of strong coupling between multiple BICs and excitons in bulk WS2 metasurfaces

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Jianghao Chen, Suxia Xie, Miaowenhao Sun, Zhaoyou Zeng, Siyi Sun, Xin Guan
{"title":"Regulation of strong coupling between multiple BICs and excitons in bulk WS2 metasurfaces","authors":"Jianghao Chen,&nbsp;Suxia Xie,&nbsp;Miaowenhao Sun,&nbsp;Zhaoyou Zeng,&nbsp;Siyi Sun,&nbsp;Xin Guan","doi":"10.1016/j.physb.2025.417141","DOIUrl":null,"url":null,"abstract":"<div><div>Bulk transition metal dichalcogenides have become staples in nanophotonics, condensed matter physics, and quantum optics due to their elevated refractive index and the reliable exciton response they maintain at room temperature. In our research, we harness block WS<sub>2</sub> to engineer an ultra-thin nanodisk metasurface capable of supporting both magnetic dipole Q-BIC (quasi-bound in the continuum) resonance and magnetic ring dipole Q-BIC resonance. Remarkably, these Q-BIC resonances are capable of self-hybridizing with excitons, facilitating intense light-matter interactions within the structure, independent of an external cavity. The self-hybridized exciton polaritons, a result of the strong coupling between Q-BIC and excitons, display characteristic anti-crossing behavior, with Rabi splittings reaching up to 161 meV and 165 meV, respectively. Building upon these findings, we utilize a Hamiltonian model that accounts for residual excitons, thereby substantiating the strong coupling phenomenon. Our discoveries hold significant promise for the manipulation of excitonic polaritons at room temperature, potentially leading to the development of large-scale, cost-effective integrated polaron devices that operate under room temperature.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417141"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002583","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk transition metal dichalcogenides have become staples in nanophotonics, condensed matter physics, and quantum optics due to their elevated refractive index and the reliable exciton response they maintain at room temperature. In our research, we harness block WS2 to engineer an ultra-thin nanodisk metasurface capable of supporting both magnetic dipole Q-BIC (quasi-bound in the continuum) resonance and magnetic ring dipole Q-BIC resonance. Remarkably, these Q-BIC resonances are capable of self-hybridizing with excitons, facilitating intense light-matter interactions within the structure, independent of an external cavity. The self-hybridized exciton polaritons, a result of the strong coupling between Q-BIC and excitons, display characteristic anti-crossing behavior, with Rabi splittings reaching up to 161 meV and 165 meV, respectively. Building upon these findings, we utilize a Hamiltonian model that accounts for residual excitons, thereby substantiating the strong coupling phenomenon. Our discoveries hold significant promise for the manipulation of excitonic polaritons at room temperature, potentially leading to the development of large-scale, cost-effective integrated polaron devices that operate under room temperature.
调控块状 WS2 超表面中多个 BIC 与激子之间的强耦合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信