The high-pressure phase transition in tin diselenide discovered by Raman scattering and X-ray diffraction analysis

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Fangfang Chen , Liuxia Sun , Hua Zhao , Pan Liang , Kai Jiang
{"title":"The high-pressure phase transition in tin diselenide discovered by Raman scattering and X-ray diffraction analysis","authors":"Fangfang Chen ,&nbsp;Liuxia Sun ,&nbsp;Hua Zhao ,&nbsp;Pan Liang ,&nbsp;Kai Jiang","doi":"10.1016/j.physb.2025.417139","DOIUrl":null,"url":null,"abstract":"<div><div>The two-dimensional (2D) semiconductor tin diselenide (SnSe<sub>2</sub>) has recently gained great attention in electronic and optical attributed to its unique physical properties. Here, we present a pressure-dependent study on the phase transformation behavior of the SnSe<sub>2</sub> crystal range from ambient pressure up to 34.81 GPa. In order to study the phase transition behavior of SnSe<sub>2</sub>, we employed <em>In situ,</em> high-pressure Raman spectroscopy and X-ray diffraction (XRD). The obtained single-crystal XRD data reveal that at 34.81 GPa, the lengths of the <em>a</em> and <em>c</em> axes are reduced by approximately 9.2 % and 21.7 %, respectively, compared to their values at 0 GPa. This indicates that the lattice parameter <em>a</em> is less affected by pressure compared to the lattice constant <em>c</em>. At a pressure of up to 8 GPa, the low-frequency vibrational mode (approximately 119 cm<sup>−1</sup>) becomes significantly weaker and then undetectable. Surprisingly, a Raman band gradually emerges at around 80 cm<sup>−1</sup>. Additionally, the high-frequency vibrational mode gradually splits into two modes, and the Raman signal weakens and broadens. These phenomena suggest a decrease in the crystalline symmetry of SnSe<sub>2</sub> and the occurrence of semiconductor-to-metal transitions from 8 GPa onward. Our findings offer a new avenue for further investigation into the complex phase transition mechanisms in transition metal dichalcogenides-related materials.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417139"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500256X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The two-dimensional (2D) semiconductor tin diselenide (SnSe2) has recently gained great attention in electronic and optical attributed to its unique physical properties. Here, we present a pressure-dependent study on the phase transformation behavior of the SnSe2 crystal range from ambient pressure up to 34.81 GPa. In order to study the phase transition behavior of SnSe2, we employed In situ, high-pressure Raman spectroscopy and X-ray diffraction (XRD). The obtained single-crystal XRD data reveal that at 34.81 GPa, the lengths of the a and c axes are reduced by approximately 9.2 % and 21.7 %, respectively, compared to their values at 0 GPa. This indicates that the lattice parameter a is less affected by pressure compared to the lattice constant c. At a pressure of up to 8 GPa, the low-frequency vibrational mode (approximately 119 cm−1) becomes significantly weaker and then undetectable. Surprisingly, a Raman band gradually emerges at around 80 cm−1. Additionally, the high-frequency vibrational mode gradually splits into two modes, and the Raman signal weakens and broadens. These phenomena suggest a decrease in the crystalline symmetry of SnSe2 and the occurrence of semiconductor-to-metal transitions from 8 GPa onward. Our findings offer a new avenue for further investigation into the complex phase transition mechanisms in transition metal dichalcogenides-related materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信