Mingliang Bai , Wenjiang Yang , Ruopu Zhang , Zibing Qu , Juzhuang Yan
{"title":"Hydrogen–electric–thermal coupling analysis and validation of superconducting turbo-electric hybrid propulsion system","authors":"Mingliang Bai , Wenjiang Yang , Ruopu Zhang , Zibing Qu , Juzhuang Yan","doi":"10.1016/j.ijepes.2025.110551","DOIUrl":null,"url":null,"abstract":"<div><div>The superconducting turbo-electric hybrid propulsion system (TEHPS) integrates superconducting technology and hydrogen energy technology, presenting a potential solution to achieve efficient and high-power propulsion. This study focuses on the design of a liquid hydrogen-cooled superconducting TEHPS, incorporating detailed models for key components, including the hydrogen turbine engine, fuel cell, and superconducting machines. A comprehensive hydrogen–electric–thermal (HET) analysis framework is introduced to optimize system fuel and temperature performance, with feasibility and effectiveness evaluated under conservative, baseline, and optimistic 2035 scenarios. Simulation results for typical mission profiles demonstrate that a hybrid propulsion scheme, combining the engine and fuel cell during takeoff, climb, and cruise phases, and utilizing either the engine or fuel cell alone during the descent phase, can effectively balance fuel and coolant demands, leading to a fuel consumption reduction of up to 22.3% in the optimistic scenario. Improvements in component parameters can significantly reduce the powertrain mass, increase power-to-weight ratio and enhance energy conversion efficiency. Under the optimistic scenario, the system achieves a peak power density of 2.15 kW/kg and an energy conversion efficiency of 75%. Furthermore, a scaled ground testbed for the superconducting TEHPS validated the feasibility of cryogenic cooling, superconducting generators, and hybrid-electric distributed propulsion technologies.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110551"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The superconducting turbo-electric hybrid propulsion system (TEHPS) integrates superconducting technology and hydrogen energy technology, presenting a potential solution to achieve efficient and high-power propulsion. This study focuses on the design of a liquid hydrogen-cooled superconducting TEHPS, incorporating detailed models for key components, including the hydrogen turbine engine, fuel cell, and superconducting machines. A comprehensive hydrogen–electric–thermal (HET) analysis framework is introduced to optimize system fuel and temperature performance, with feasibility and effectiveness evaluated under conservative, baseline, and optimistic 2035 scenarios. Simulation results for typical mission profiles demonstrate that a hybrid propulsion scheme, combining the engine and fuel cell during takeoff, climb, and cruise phases, and utilizing either the engine or fuel cell alone during the descent phase, can effectively balance fuel and coolant demands, leading to a fuel consumption reduction of up to 22.3% in the optimistic scenario. Improvements in component parameters can significantly reduce the powertrain mass, increase power-to-weight ratio and enhance energy conversion efficiency. Under the optimistic scenario, the system achieves a peak power density of 2.15 kW/kg and an energy conversion efficiency of 75%. Furthermore, a scaled ground testbed for the superconducting TEHPS validated the feasibility of cryogenic cooling, superconducting generators, and hybrid-electric distributed propulsion technologies.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.