{"title":"Efficient synthesis of smaller crystal ZSM-5 zeolite in low TPAOH-to-silica ratio dry-gel hydrothermal system","authors":"Jiahui Hu, Hao Jiang, Yitong Guo, Jing Liu, Dan Xu, Guoxing Wu, Yanhui Yi, Zhongkui Zhao, Hongchen Guo","doi":"10.1016/j.micromeso.2025.113596","DOIUrl":null,"url":null,"abstract":"<div><div>The present study is related to the synthesis of nano-sized ZSM-5 zeolite with a dry-gel hydrothermal (DHT) method which is different from the known dry-gel conversion (DGC) method, for it allows the crystallization of the dry-gel in water or n-butylamine solution and the use of common autoclaves. The effects of TPAOH/SiO<sub>2</sub> ratio on the crystal size of ZSM-5 zeolite product, and the viability of synthesizing nano-sized ZSM-5 zeolite using the new method from a TPAOH-poor dry-gel with the aid of co-template n-butylamine are emphasized. Results show that, under the same TPAOH/SiO<sub>2</sub> ratio conditions, DHT synthesis is more beneficial for obtaining smaller crystal size ZSM-5 zeolite than the conventional hydrothermal (CHT) synthesis. The DHT synthesis can be implemented with a TPAOH-rich dry-gel (for example, TPAOH/SiO<sub>2</sub>≥0.15) by using simply water as crystallizing solution, to yield discrete nano-sized ZSM-5 zeolite (crystal size 70 nm), or with a TPAOH-poor dry-gel (for example, TPAOH/SiO<sub>2</sub> = 0.075) by using a concentrated NBA aqueous solution (for example, a solution contains 75 % NBA) as crystallizing solution, to yield aggregates of nano-sized ZSM-5 zeolite (primary particle size 200 nm). The nano-sized ZSM-5 zeolites synthesized by the DHT method are inclined to have larger mesoporous and macroporous volume. After being doped with zinc ions, they become promising catalysts for the aromatization of n-hexane (n-h).</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"390 ","pages":"Article 113596"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001106","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The present study is related to the synthesis of nano-sized ZSM-5 zeolite with a dry-gel hydrothermal (DHT) method which is different from the known dry-gel conversion (DGC) method, for it allows the crystallization of the dry-gel in water or n-butylamine solution and the use of common autoclaves. The effects of TPAOH/SiO2 ratio on the crystal size of ZSM-5 zeolite product, and the viability of synthesizing nano-sized ZSM-5 zeolite using the new method from a TPAOH-poor dry-gel with the aid of co-template n-butylamine are emphasized. Results show that, under the same TPAOH/SiO2 ratio conditions, DHT synthesis is more beneficial for obtaining smaller crystal size ZSM-5 zeolite than the conventional hydrothermal (CHT) synthesis. The DHT synthesis can be implemented with a TPAOH-rich dry-gel (for example, TPAOH/SiO2≥0.15) by using simply water as crystallizing solution, to yield discrete nano-sized ZSM-5 zeolite (crystal size 70 nm), or with a TPAOH-poor dry-gel (for example, TPAOH/SiO2 = 0.075) by using a concentrated NBA aqueous solution (for example, a solution contains 75 % NBA) as crystallizing solution, to yield aggregates of nano-sized ZSM-5 zeolite (primary particle size 200 nm). The nano-sized ZSM-5 zeolites synthesized by the DHT method are inclined to have larger mesoporous and macroporous volume. After being doped with zinc ions, they become promising catalysts for the aromatization of n-hexane (n-h).
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.