{"title":"Electrocatalytic synthesis of pure H2O2 from crossover oxygen through a porous proton exchange membrane","authors":"Kazuma Enomoto, Takuya Okazaki, Kosuke Beppu, Fumiaki Amano","doi":"10.1016/j.mtcata.2025.100088","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a valuable chemical, and its eco-friendly electrochemical production has gained attention to obtain pH-neutral aqueous solutions without impurities. However, achieving H<sub>2</sub>O<sub>2</sub> faradaic efficiencies (FEs) above 30 % has been a challenge with conventional proton exchange membrane (PEM) electrolyzers. To enhance H<sub>2</sub>O<sub>2</sub> FE, efficient collection of H<sub>2</sub>O<sub>2</sub> from the catalyst surface using liquid water is necessary, but oxygen diffusion becomes a limiting factor in aqueous-immersed systems. To overcome this, we designed a zero-gap electrolyzer, supplying oxygen gas from the anode side through the membrane to the cathode. A gas flow-through porous PEM was developed by embedding an acidic ionomer into a membrane filter, enabling the crossover oxygen supply to the cathode flooded with water. This porous PEM design facilitated the formation of a three-phase interface at the catalyst, where high-concentration oxygen gas and liquid water interact closely, achieving 79 % H<sub>2</sub>O<sub>2</sub> FE at 5 mA cm<sup>−2</sup>. Continuous synthesis of pure H<sub>2</sub>O<sub>2</sub> solution exceeding 5500 mg L<sup>−1</sup> (0.55 wt%) was sustained for over 50 hours.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen peroxide (H2O2) is a valuable chemical, and its eco-friendly electrochemical production has gained attention to obtain pH-neutral aqueous solutions without impurities. However, achieving H2O2 faradaic efficiencies (FEs) above 30 % has been a challenge with conventional proton exchange membrane (PEM) electrolyzers. To enhance H2O2 FE, efficient collection of H2O2 from the catalyst surface using liquid water is necessary, but oxygen diffusion becomes a limiting factor in aqueous-immersed systems. To overcome this, we designed a zero-gap electrolyzer, supplying oxygen gas from the anode side through the membrane to the cathode. A gas flow-through porous PEM was developed by embedding an acidic ionomer into a membrane filter, enabling the crossover oxygen supply to the cathode flooded with water. This porous PEM design facilitated the formation of a three-phase interface at the catalyst, where high-concentration oxygen gas and liquid water interact closely, achieving 79 % H2O2 FE at 5 mA cm−2. Continuous synthesis of pure H2O2 solution exceeding 5500 mg L−1 (0.55 wt%) was sustained for over 50 hours.