Diagnosis indicator for blade-casing rubbing faults based on multi-harmonic phases

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Tao Zhou , Yuanshuang Bi , Hao Wang , Limin Zou , Minghui Hu
{"title":"Diagnosis indicator for blade-casing rubbing faults based on multi-harmonic phases","authors":"Tao Zhou ,&nbsp;Yuanshuang Bi ,&nbsp;Hao Wang ,&nbsp;Limin Zou ,&nbsp;Minghui Hu","doi":"10.1016/j.ymssp.2025.112550","DOIUrl":null,"url":null,"abstract":"<div><div>Blade-casing rubbing is a typical fault of aero-engines. Due to its scattered features and primarily caused by other faults, diagnosing it remains a challenge. This paper proposes a diagnosis indicator based on multi-harmonic phases for real-time monitoring of rubbing faults in aero-engines. Firstly, through the theoretical derivation, we find that the multi-harmonic phases can reflect the occurrence of rubbing faults. Secondly, a rubbing fault diagnosis indicator, <em>PKLM</em>, is constructed by weighted incorporation of multi-harmonic phases, with Kullback–Leibler divergence employed to amplify the differences between the fault and normal conditions. An optimal harmonic number criterion, <em>S</em>, is established for constructing the indicator, along with a threshold, <em>PKLH</em>, to determine the system’s condition. Thirdly, the measured harmonic phases are processed to serve as effective inputs for the indicator. Finally, model simulations and experimental results confirm that the proposed indicator can isolate interference from other rotor faults and effectively quantitatively diagnose aero-engine rubbing faults.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"229 ","pages":"Article 112550"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025002511","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Blade-casing rubbing is a typical fault of aero-engines. Due to its scattered features and primarily caused by other faults, diagnosing it remains a challenge. This paper proposes a diagnosis indicator based on multi-harmonic phases for real-time monitoring of rubbing faults in aero-engines. Firstly, through the theoretical derivation, we find that the multi-harmonic phases can reflect the occurrence of rubbing faults. Secondly, a rubbing fault diagnosis indicator, PKLM, is constructed by weighted incorporation of multi-harmonic phases, with Kullback–Leibler divergence employed to amplify the differences between the fault and normal conditions. An optimal harmonic number criterion, S, is established for constructing the indicator, along with a threshold, PKLH, to determine the system’s condition. Thirdly, the measured harmonic phases are processed to serve as effective inputs for the indicator. Finally, model simulations and experimental results confirm that the proposed indicator can isolate interference from other rotor faults and effectively quantitatively diagnose aero-engine rubbing faults.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信