Molecular dynamics and machine learning study of tensile behavior in single-crystal tungsten containing He bubbles

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pan-dong Lin , Yan Lin , Hong-guang Li , Shu-gang Cui , Jun-feng Nie , Bai-wen Zhong , Yu-peng Lu
{"title":"Molecular dynamics and machine learning study of tensile behavior in single-crystal tungsten containing He bubbles","authors":"Pan-dong Lin ,&nbsp;Yan Lin ,&nbsp;Hong-guang Li ,&nbsp;Shu-gang Cui ,&nbsp;Jun-feng Nie ,&nbsp;Bai-wen Zhong ,&nbsp;Yu-peng Lu","doi":"10.1016/j.matdes.2025.113831","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten is commonly used in nuclear fusion plants, where irradiation defects (e.g., He bubbles) are frequently generated. This study investigates the impact of He bubbles on the tensile behavior of single-crystal tungsten through molecular dynamics (MD) simulations. The analysis considers varying He bubble sizes, He/V ratios (the number of helium atoms with respect to the number of vacancies in helium bubble), temperatures, and strain rates. The findings indicate that He bubbles significantly affect the material’s mechanical properties, with larger bubble sizes reducing tensile strength. Dislocation emission initiates from the void surface during tensile deformation. While the He/V ratio slightly influences peak stress values, it does not alter the overall stress–strain curve. Elevated temperatures lower peak stress, whereas higher strain rates increase it. Additionally, machine learning models predict the combined effects of bubble size, He/V ratio, strain rate, and temperature on the peak stress of tungsten, utilizing MD simulation data. This work offers important insights into tungsten’s behavior under irradiation conditions.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113831"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tungsten is commonly used in nuclear fusion plants, where irradiation defects (e.g., He bubbles) are frequently generated. This study investigates the impact of He bubbles on the tensile behavior of single-crystal tungsten through molecular dynamics (MD) simulations. The analysis considers varying He bubble sizes, He/V ratios (the number of helium atoms with respect to the number of vacancies in helium bubble), temperatures, and strain rates. The findings indicate that He bubbles significantly affect the material’s mechanical properties, with larger bubble sizes reducing tensile strength. Dislocation emission initiates from the void surface during tensile deformation. While the He/V ratio slightly influences peak stress values, it does not alter the overall stress–strain curve. Elevated temperatures lower peak stress, whereas higher strain rates increase it. Additionally, machine learning models predict the combined effects of bubble size, He/V ratio, strain rate, and temperature on the peak stress of tungsten, utilizing MD simulation data. This work offers important insights into tungsten’s behavior under irradiation conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信