Pan-dong Lin , Yan Lin , Hong-guang Li , Shu-gang Cui , Jun-feng Nie , Bai-wen Zhong , Yu-peng Lu
{"title":"Molecular dynamics and machine learning study of tensile behavior in single-crystal tungsten containing He bubbles","authors":"Pan-dong Lin , Yan Lin , Hong-guang Li , Shu-gang Cui , Jun-feng Nie , Bai-wen Zhong , Yu-peng Lu","doi":"10.1016/j.matdes.2025.113831","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten is commonly used in nuclear fusion plants, where irradiation defects (e.g., He bubbles) are frequently generated. This study investigates the impact of He bubbles on the tensile behavior of single-crystal tungsten through molecular dynamics (MD) simulations. The analysis considers varying He bubble sizes, He/V ratios (the number of helium atoms with respect to the number of vacancies in helium bubble), temperatures, and strain rates. The findings indicate that He bubbles significantly affect the material’s mechanical properties, with larger bubble sizes reducing tensile strength. Dislocation emission initiates from the void surface during tensile deformation. While the He/V ratio slightly influences peak stress values, it does not alter the overall stress–strain curve. Elevated temperatures lower peak stress, whereas higher strain rates increase it. Additionally, machine learning models predict the combined effects of bubble size, He/V ratio, strain rate, and temperature on the peak stress of tungsten, utilizing MD simulation data. This work offers important insights into tungsten’s behavior under irradiation conditions.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113831"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002515","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tungsten is commonly used in nuclear fusion plants, where irradiation defects (e.g., He bubbles) are frequently generated. This study investigates the impact of He bubbles on the tensile behavior of single-crystal tungsten through molecular dynamics (MD) simulations. The analysis considers varying He bubble sizes, He/V ratios (the number of helium atoms with respect to the number of vacancies in helium bubble), temperatures, and strain rates. The findings indicate that He bubbles significantly affect the material’s mechanical properties, with larger bubble sizes reducing tensile strength. Dislocation emission initiates from the void surface during tensile deformation. While the He/V ratio slightly influences peak stress values, it does not alter the overall stress–strain curve. Elevated temperatures lower peak stress, whereas higher strain rates increase it. Additionally, machine learning models predict the combined effects of bubble size, He/V ratio, strain rate, and temperature on the peak stress of tungsten, utilizing MD simulation data. This work offers important insights into tungsten’s behavior under irradiation conditions.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.