Yu Sun, Xiaojun Fan, Jiao Wang, Yijun Wang, Junlin Cheng, Lu Luo, Yueru Li
{"title":"Numerical research of a new pipe network cooling scheme without film holes for the gas turbine blade mid-chord region","authors":"Yu Sun, Xiaojun Fan, Jiao Wang, Yijun Wang, Junlin Cheng, Lu Luo, Yueru Li","doi":"10.1016/j.ijthermalsci.2025.109860","DOIUrl":null,"url":null,"abstract":"<div><div>To explore new efficient cooling technology for advanced gas turbine blades and reduce dependence on film cooling, this paper proposes a novel pipe network cooling structure. The design connects leading-edge impingement cooling holes to trailing-edge slits through lateral pipes and incorporates independent vertical pipes to form a network structure. This cooling structure can be applied to a complete blade cooling system, demonstrating strong cooling performance in the mid-chord region despite the absence of film holes, while achieving a more uniform overall temperature distribution, showing promising developmental potential. Through experimental and numerical simulations, comparisons were made with typical gas turbine blade cooling structures and double-wall cooling structures. The results indicate that this new pipes network cooling structure offers superior cooling performance and achieves a more uniform temperature distribution. In addition, the study investigated the impact of lateral pipes shapes and the distances between transverse and vertical pipes relative to the end wall on cooling performance. The results showed that, under the same boundary conditions, hexagonal pipes performed better. The relative positions of transverse and vertical pipes significantly affected blade cooling efficiency. P<sub>1</sub>/P<sub>2</sub> = 0.5, the temperature distribution was the most uniform; P<sub>1</sub>/P<sub>2</sub> = 1, heat transfer in the mid-chord region improved.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109860"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001838","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To explore new efficient cooling technology for advanced gas turbine blades and reduce dependence on film cooling, this paper proposes a novel pipe network cooling structure. The design connects leading-edge impingement cooling holes to trailing-edge slits through lateral pipes and incorporates independent vertical pipes to form a network structure. This cooling structure can be applied to a complete blade cooling system, demonstrating strong cooling performance in the mid-chord region despite the absence of film holes, while achieving a more uniform overall temperature distribution, showing promising developmental potential. Through experimental and numerical simulations, comparisons were made with typical gas turbine blade cooling structures and double-wall cooling structures. The results indicate that this new pipes network cooling structure offers superior cooling performance and achieves a more uniform temperature distribution. In addition, the study investigated the impact of lateral pipes shapes and the distances between transverse and vertical pipes relative to the end wall on cooling performance. The results showed that, under the same boundary conditions, hexagonal pipes performed better. The relative positions of transverse and vertical pipes significantly affected blade cooling efficiency. P1/P2 = 0.5, the temperature distribution was the most uniform; P1/P2 = 1, heat transfer in the mid-chord region improved.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.