Yu Zhang , Hui Zhang , Hongwei Ma , Wei Sun , Kunpeng Xu , Hui Li
{"title":"Composite-airfoil-plate with embedded macro-fiber-composites: Aero-thermo-electro vibration analysis and active control","authors":"Yu Zhang , Hui Zhang , Hongwei Ma , Wei Sun , Kunpeng Xu , Hui Li","doi":"10.1016/j.ijmecsci.2025.110143","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of aerospace technology, fiber reinforced composites (FRCs) have been widely used because of their excellent mechanical properties, especially composite airfoil plates with non-rectangular geometric characteristics (CAPs-NRG). Aiming at the complex vibration behavior of these structures, which may be caused by aerodynamic pressure and thermal load in high altitude and supersonic environments, a novel active vibration control design scheme of embedded macro fiber composites (MFCs) is proposed in this paper. Firstly, a dynamic modeling method of aero-thermo-electro coupling based on the penalty function method is developed to describe the dynamic response of CAPs-NRG with embedded MFCs accurately. The rationality of the model is verified by comparing it with the literature and the finite element method. Secondly, to deal with the adverse effects of complex aerodynamic loads and environmental noise on control performance, an adaptive hybrid control algorithm of the filtered-proportional differential-linear quadratic regulator (F-PD-LQR) based on the power change is designed to achieve more precise and reliable vibration control. Furthermore, the influence of geometric parameters of CAPs-NRG on flutter behavior is discussed, and the effectiveness of the proposed control algorithm under different aerodynamic pressure and temperature conditions is evaluated. Through the above research, this paper provides an efficient and reliable flutter control solution for CAPs-NRG and lays a foundation for ensuring flight vehicle safety.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"290 ","pages":"Article 110143"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002292","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of aerospace technology, fiber reinforced composites (FRCs) have been widely used because of their excellent mechanical properties, especially composite airfoil plates with non-rectangular geometric characteristics (CAPs-NRG). Aiming at the complex vibration behavior of these structures, which may be caused by aerodynamic pressure and thermal load in high altitude and supersonic environments, a novel active vibration control design scheme of embedded macro fiber composites (MFCs) is proposed in this paper. Firstly, a dynamic modeling method of aero-thermo-electro coupling based on the penalty function method is developed to describe the dynamic response of CAPs-NRG with embedded MFCs accurately. The rationality of the model is verified by comparing it with the literature and the finite element method. Secondly, to deal with the adverse effects of complex aerodynamic loads and environmental noise on control performance, an adaptive hybrid control algorithm of the filtered-proportional differential-linear quadratic regulator (F-PD-LQR) based on the power change is designed to achieve more precise and reliable vibration control. Furthermore, the influence of geometric parameters of CAPs-NRG on flutter behavior is discussed, and the effectiveness of the proposed control algorithm under different aerodynamic pressure and temperature conditions is evaluated. Through the above research, this paper provides an efficient and reliable flutter control solution for CAPs-NRG and lays a foundation for ensuring flight vehicle safety.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.