{"title":"Dual Hamiltonian transformation and magneto-electro-thermo-viscoelastic contact analysis","authors":"Lizichen Chen , C.W. Lim , Weiqiu Chen","doi":"10.1016/j.ijmecsci.2025.110077","DOIUrl":null,"url":null,"abstract":"<div><div>The application of high-throughput testing methodologies and the involvement of functionally graded specimens for material characterization show immense potential and plays an indispensable role in the progressive advent of advanced materials. Nevertheless, the inherent material inhomogeneity and multi-field coupling pose great obstacles in the fundamental theory and analysis for the behavior of functionally graded specimens, thus necessitating the proposal of new and innovative analytical approaches. Here, the contact model and analysis of a finite-sized magneto-electro-thermo-viscoelastic plane with a horizontal exponential material gradient is established based on a new symplectic approach. With prior linearization via Laplace transform, the state equations are constructed in the matrix form, resulting in the dual Hamiltonian transformation under homogeneous displacement constraint. The dual adjoint symplectic orthogonality is introduced and proved, elucidating the implications of symmetry breaking. General and particular solutions are derived to constitute the complete solution in the symplectic expansion. The analytical solution is verified by comparing with highly precise finite element solutions in the entire domain. This current work not only paves the way for an efficient and robust analytical framework via the symplectic methodology, but also sets a foundation with benchmark exact solutions for future research endeavors.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"290 ","pages":"Article 110077"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325001638","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of high-throughput testing methodologies and the involvement of functionally graded specimens for material characterization show immense potential and plays an indispensable role in the progressive advent of advanced materials. Nevertheless, the inherent material inhomogeneity and multi-field coupling pose great obstacles in the fundamental theory and analysis for the behavior of functionally graded specimens, thus necessitating the proposal of new and innovative analytical approaches. Here, the contact model and analysis of a finite-sized magneto-electro-thermo-viscoelastic plane with a horizontal exponential material gradient is established based on a new symplectic approach. With prior linearization via Laplace transform, the state equations are constructed in the matrix form, resulting in the dual Hamiltonian transformation under homogeneous displacement constraint. The dual adjoint symplectic orthogonality is introduced and proved, elucidating the implications of symmetry breaking. General and particular solutions are derived to constitute the complete solution in the symplectic expansion. The analytical solution is verified by comparing with highly precise finite element solutions in the entire domain. This current work not only paves the way for an efficient and robust analytical framework via the symplectic methodology, but also sets a foundation with benchmark exact solutions for future research endeavors.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.