Scaling process intensification technologies: what does it take to deploy?

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Daria C. Boffito
{"title":"Scaling process intensification technologies: what does it take to deploy?","authors":"Daria C. Boffito","doi":"10.1016/j.cep.2025.110275","DOIUrl":null,"url":null,"abstract":"<div><div>Process intensification (PI) has emerged as a transformative approach to enhancing efficiency, sustainability, and economics across chemical and manufacturing industries. However, within its dedicated communities, there is recognition of a persistent gap in transitioning these innovations from laboratory-scale success to widespread industrial adoption. Scaling up PI technologies is far more complex than simply replicating laboratory conditions on a larger scale. Challenges such as the integration with existing units and processes, proving economic viability, and navigating regulatory requirements often impede the practical implementation of PI innovations. This paper aims to identify the key enablers for scaling up PI technologies by presenting a roadmap to bridge the gap between concept and commercialization. While robust engineering design frameworks and advanced modeling tools are crucial, interdisciplinary collaborations and lab-to-market partnerships (or integrated scaling collaborations) are equally critical to drive the successful adoption of PI at the industrial scale.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110275"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001242","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Process intensification (PI) has emerged as a transformative approach to enhancing efficiency, sustainability, and economics across chemical and manufacturing industries. However, within its dedicated communities, there is recognition of a persistent gap in transitioning these innovations from laboratory-scale success to widespread industrial adoption. Scaling up PI technologies is far more complex than simply replicating laboratory conditions on a larger scale. Challenges such as the integration with existing units and processes, proving economic viability, and navigating regulatory requirements often impede the practical implementation of PI innovations. This paper aims to identify the key enablers for scaling up PI technologies by presenting a roadmap to bridge the gap between concept and commercialization. While robust engineering design frameworks and advanced modeling tools are crucial, interdisciplinary collaborations and lab-to-market partnerships (or integrated scaling collaborations) are equally critical to drive the successful adoption of PI at the industrial scale.

Abstract Image

推广加工强化技术:部署需要什么?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信