Modulating phonon-electron Fano resonance in Si nanoparticles through laser exposure and properties of surrounding nanoparticles

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nourhan Barakat , Fouad El Haj Hassan , Michel Kazan
{"title":"Modulating phonon-electron Fano resonance in Si nanoparticles through laser exposure and properties of surrounding nanoparticles","authors":"Nourhan Barakat ,&nbsp;Fouad El Haj Hassan ,&nbsp;Michel Kazan","doi":"10.1016/j.jpcs.2025.112700","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents scalable and cost-effective methods for precisely modulating the phonon-electron Fano resonance in silicon (Si) nanoparticles, with potential applications in sensing, quantum technologies, and energy devices. Beyond conventional approaches reliant on laser intensity, we demonstrate that the Fano resonance can be enhanced by prolonged laser exposure, which increases electronic transitions to energy levels induced by band-edge disorder, and by strong electromagnetic field confinement achieved through multiple light scattering by non-absorbing surrounding particles. Conversely, the Fano resonance strength can be attenuated by introducing anharmonic decay channels for Si optical phonons, driven by anharmonic interactions between Si phonons and phonons of surrounding nanoparticles. These interactions disrupt the coherence essential for a strong Fano resonance, providing a controllable mechanism for weakening the effect. Experimental validation is achieved using Si nanoparticles embedded in granular media composed of zinc oxide (ZnO), monoclinic gallium oxide (β-Ga<sub>2</sub>O<sub>3</sub>), and graphite (C). By leveraging laser exposure, electromagnetic field confinement, and tailored nanoparticle environments, this work offers versatile and scalable strategies for advancing photonics, optoelectronics, thermoelectrics, and Raman-based sensing technologies.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"202 ","pages":"Article 112700"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725001519","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents scalable and cost-effective methods for precisely modulating the phonon-electron Fano resonance in silicon (Si) nanoparticles, with potential applications in sensing, quantum technologies, and energy devices. Beyond conventional approaches reliant on laser intensity, we demonstrate that the Fano resonance can be enhanced by prolonged laser exposure, which increases electronic transitions to energy levels induced by band-edge disorder, and by strong electromagnetic field confinement achieved through multiple light scattering by non-absorbing surrounding particles. Conversely, the Fano resonance strength can be attenuated by introducing anharmonic decay channels for Si optical phonons, driven by anharmonic interactions between Si phonons and phonons of surrounding nanoparticles. These interactions disrupt the coherence essential for a strong Fano resonance, providing a controllable mechanism for weakening the effect. Experimental validation is achieved using Si nanoparticles embedded in granular media composed of zinc oxide (ZnO), monoclinic gallium oxide (β-Ga2O3), and graphite (C). By leveraging laser exposure, electromagnetic field confinement, and tailored nanoparticle environments, this work offers versatile and scalable strategies for advancing photonics, optoelectronics, thermoelectrics, and Raman-based sensing technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信