Sebastian Karlsson, Johanna Beiron, Fredrik Normann, Filip Johnsson
{"title":"The roles of permitting times and grid expansion capacity in industrial decarbonization – A case study of the electrification of Swedish industry","authors":"Sebastian Karlsson, Johanna Beiron, Fredrik Normann, Filip Johnsson","doi":"10.1016/j.ecmx.2025.100962","DOIUrl":null,"url":null,"abstract":"<div><div>The industrial sector accounts for almost one-third of global CO<sub>2</sub> emissions, making it an important target for emissions mitigation measures, with electrification representing an important mitigation pathway with reliance on timely permitting procedures and ramping up of electricity grid expansion.</div><div>In this work, we investigate the impacts of permitting times and grid construction capacity on the evolution of industrial electrification, using the Swedish basic industry as a case study. We develop and apply an optimization model, with the objective of minimizing the time required to electrify the steel, cement, refinery and chemical industrial processes. The model is applied to different scenarios, within the ranges of 1–9 years of permitting time and 100–700 MW/year of grid expansion capacity, while varying the level of project coordination between the industrial sites and grid infrastructure deployments. In the modeling, we assume that the required CO<sub>2</sub>-free power generation is installed alongside the grid expansion. In a scenario with 8-year permitting times and the ability to expand the grid to accommodate 4.5 % (150 MW) of the modeled industrial load per year, the transition to a fully electrified industry takes until Year 2058. For 2-year permitting times and the ability to expand the grid to connect 18 % (600 MW) of the modeled industrial load per year, the modeled sites could be electrified by Year 2037. In addition, the results show that for low levels of coordination, modeled such that industrial actors wait for infrastructure projects to be completed before they initiate their own pre-studies, there is an increase of almost 8 years in the average time taken for sites to be electrified compared to a modeled base scenario.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100962"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The industrial sector accounts for almost one-third of global CO2 emissions, making it an important target for emissions mitigation measures, with electrification representing an important mitigation pathway with reliance on timely permitting procedures and ramping up of electricity grid expansion.
In this work, we investigate the impacts of permitting times and grid construction capacity on the evolution of industrial electrification, using the Swedish basic industry as a case study. We develop and apply an optimization model, with the objective of minimizing the time required to electrify the steel, cement, refinery and chemical industrial processes. The model is applied to different scenarios, within the ranges of 1–9 years of permitting time and 100–700 MW/year of grid expansion capacity, while varying the level of project coordination between the industrial sites and grid infrastructure deployments. In the modeling, we assume that the required CO2-free power generation is installed alongside the grid expansion. In a scenario with 8-year permitting times and the ability to expand the grid to accommodate 4.5 % (150 MW) of the modeled industrial load per year, the transition to a fully electrified industry takes until Year 2058. For 2-year permitting times and the ability to expand the grid to connect 18 % (600 MW) of the modeled industrial load per year, the modeled sites could be electrified by Year 2037. In addition, the results show that for low levels of coordination, modeled such that industrial actors wait for infrastructure projects to be completed before they initiate their own pre-studies, there is an increase of almost 8 years in the average time taken for sites to be electrified compared to a modeled base scenario.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.