{"title":"UBA52 Mediates ribosomal DNA stability under hexavalent chromium exposure in occupational workers and cellular models","authors":"Huadong Xu , Fan Wu , Chuyan Zhang , Chan Ding , Shuqian Chen , Lingfang Feng , Junfei Chen , Zhaoqiang Jiang , Yongxin Li , Jianlin Lou","doi":"10.1016/j.ecoenv.2025.118047","DOIUrl":null,"url":null,"abstract":"<div><div>Hexavalent chromium [Cr(VI)] exposure poses substantial environmental and health risks, especially in occupational settings, where it has been linked to genomic instability. Our previous research demonstrated that Cr(VI) exposure could induce DNA copy number (CN) variation. Here, we examined the role of Ubiquitin A-52 ribosomal protein fusion product 1 (UBA52) in stabilizing rDNA CN under Cr(VI) exposure by analyzing data from Cr(VI)-exposed workers and matched controls. Results showed significantly elevated blood Cr levels, increased γH2AX expression, and higher rDNA CN in exposed individuals, alongside upregulated UBA52 mRNA and protein levels. Spearman and regression analyses identified positive correlations between Cr levels and UBA52 expression, and between UBA52 expression and rDNA CN. <em>In vitro</em> studies in BEAS-2BR and HeLa cells confirmed Cr(VI)-induced upregulation of UBA52, and UBA52 knockdown led to rDNA CN instability in cells. These findings highlight that UBA52 contributes to preserving rDNA stability in the face of Cr(VI)-induced genomic stress, providing valuable insights into molecular responses to environmental Cr(VI) exposure.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"293 ","pages":"Article 118047"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325003835","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hexavalent chromium [Cr(VI)] exposure poses substantial environmental and health risks, especially in occupational settings, where it has been linked to genomic instability. Our previous research demonstrated that Cr(VI) exposure could induce DNA copy number (CN) variation. Here, we examined the role of Ubiquitin A-52 ribosomal protein fusion product 1 (UBA52) in stabilizing rDNA CN under Cr(VI) exposure by analyzing data from Cr(VI)-exposed workers and matched controls. Results showed significantly elevated blood Cr levels, increased γH2AX expression, and higher rDNA CN in exposed individuals, alongside upregulated UBA52 mRNA and protein levels. Spearman and regression analyses identified positive correlations between Cr levels and UBA52 expression, and between UBA52 expression and rDNA CN. In vitro studies in BEAS-2BR and HeLa cells confirmed Cr(VI)-induced upregulation of UBA52, and UBA52 knockdown led to rDNA CN instability in cells. These findings highlight that UBA52 contributes to preserving rDNA stability in the face of Cr(VI)-induced genomic stress, providing valuable insights into molecular responses to environmental Cr(VI) exposure.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.