Yongkang Liu, Chunguang Chen, Graham Dawson, Jinfeng Zhang, Chunfeng Shao, Kai Dai
{"title":"Organic-inorganic hybrid-based S-scheme heterostructure in solar-to-fuel conversion","authors":"Yongkang Liu, Chunguang Chen, Graham Dawson, Jinfeng Zhang, Chunfeng Shao, Kai Dai","doi":"10.1016/j.jmst.2024.12.094","DOIUrl":null,"url":null,"abstract":"Inorganic-organic S-scheme heterojunction photocatalysts exhibit excellent photocatalytic performance, with higher photogenerated charge separation efficiency and strong redox capabilities. At the same time, they possess advantages of both organic and inorganic semiconductors. This article reviews the latest progress of inorganic-organic S-scheme heterojunction photocatalysts in the photocatalysis field. Firstly, the advantages and disadvantages of various heterojunctions are described. Then, several synthesis techniques for preparing inorganic-organic S-scheme heterojunction photocatalysts and various advanced characterization methods that can verify S-scheme heterojunction photocatalysts in both steady state and transient state are discussed. Examples are given to illustrate the applications of inorganic-organic S-scheme heterojunction photocatalysts in hydrogen production, CO<sub>2</sub> emission reduction, pollutant degradation, H<sub>2</sub>O<sub>2</sub> synthesis, and organic transformation. Finally, suggestions for improving the photocatalytic performance of inorganic-organic S-scheme heterojunction photocatalysts are put forward. There is no doubt that inorganic-organic S-scheme heterojunction photocatalysts have become a prominent and promising technology in the photocatalysis field.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"11 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.094","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic-organic S-scheme heterojunction photocatalysts exhibit excellent photocatalytic performance, with higher photogenerated charge separation efficiency and strong redox capabilities. At the same time, they possess advantages of both organic and inorganic semiconductors. This article reviews the latest progress of inorganic-organic S-scheme heterojunction photocatalysts in the photocatalysis field. Firstly, the advantages and disadvantages of various heterojunctions are described. Then, several synthesis techniques for preparing inorganic-organic S-scheme heterojunction photocatalysts and various advanced characterization methods that can verify S-scheme heterojunction photocatalysts in both steady state and transient state are discussed. Examples are given to illustrate the applications of inorganic-organic S-scheme heterojunction photocatalysts in hydrogen production, CO2 emission reduction, pollutant degradation, H2O2 synthesis, and organic transformation. Finally, suggestions for improving the photocatalytic performance of inorganic-organic S-scheme heterojunction photocatalysts are put forward. There is no doubt that inorganic-organic S-scheme heterojunction photocatalysts have become a prominent and promising technology in the photocatalysis field.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.