Built-in metallic partitions in solar chimney: Structural design and thermo-hydraulic performance analysis

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Jing Nie, Jinchen Xu, Tongzheng Guo, Jiawei Wang, Jing Jia, Hong Gao
{"title":"Built-in metallic partitions in solar chimney: Structural design and thermo-hydraulic performance analysis","authors":"Jing Nie,&nbsp;Jinchen Xu,&nbsp;Tongzheng Guo,&nbsp;Jiawei Wang,&nbsp;Jing Jia,&nbsp;Hong Gao","doi":"10.1016/j.enconman.2025.119718","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a solar chimney design incorporating built-in metallic partitions to enhance convective heat transfer between fluids and solids. Based on the Manzanares prototype, numerical simulations were conducted to analyze the effects of solar radiation intensity, turbine pressure drop, and ambient temperature on flow fields and thermo-hydraulic performance. A response surface methodology was employed to develop an output power prediction model. Results indicate that metallic partitions significantly improve thermal efficiency, with relative increase rates of 9.28 % in power output and 21.61 % in collector efficiency compared to the prototype at specific operating conditions, and achieving a maximum output power of 89.607 kW under specific conditions (SR = 1000 W/m<sup>2</sup>, ΔP = 140 Pa, ambient temperature = 308 K). The system demonstrates robust operation under low radiation and high ΔP conditions. Cost-effective strategies, such as aluminum-steel composite structures and honeycomb perforated designs integrated with modular manufacturing, are proposed to reduce material costs while maintaining high heat transfer efficiency. This approach eliminates the need for large-scale ground modifications, preserves structural simplicity, and offers a novel solution for efficient, low-cost deployment in large-scale solar chimney power plants.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119718"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002419","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a solar chimney design incorporating built-in metallic partitions to enhance convective heat transfer between fluids and solids. Based on the Manzanares prototype, numerical simulations were conducted to analyze the effects of solar radiation intensity, turbine pressure drop, and ambient temperature on flow fields and thermo-hydraulic performance. A response surface methodology was employed to develop an output power prediction model. Results indicate that metallic partitions significantly improve thermal efficiency, with relative increase rates of 9.28 % in power output and 21.61 % in collector efficiency compared to the prototype at specific operating conditions, and achieving a maximum output power of 89.607 kW under specific conditions (SR = 1000 W/m2, ΔP = 140 Pa, ambient temperature = 308 K). The system demonstrates robust operation under low radiation and high ΔP conditions. Cost-effective strategies, such as aluminum-steel composite structures and honeycomb perforated designs integrated with modular manufacturing, are proposed to reduce material costs while maintaining high heat transfer efficiency. This approach eliminates the need for large-scale ground modifications, preserves structural simplicity, and offers a novel solution for efficient, low-cost deployment in large-scale solar chimney power plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信