A review of co-generative and synergistic desalination & refrigeration systems for sustainable development applications

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Gayatri Sundar Rajan , Seda Zeynep Keleş , Christian D. Peters , Binjian Nie , Hiba Bensalah , Nicholas P. Hankins
{"title":"A review of co-generative and synergistic desalination & refrigeration systems for sustainable development applications","authors":"Gayatri Sundar Rajan ,&nbsp;Seda Zeynep Keleş ,&nbsp;Christian D. Peters ,&nbsp;Binjian Nie ,&nbsp;Hiba Bensalah ,&nbsp;Nicholas P. Hankins","doi":"10.1016/j.enconman.2025.119717","DOIUrl":null,"url":null,"abstract":"<div><div>Within the water-energy-food nexus, desalination and refrigeration cogeneration systems are able to address pressing sustainable development goals. Such systems exploit the synergy between the two processes to yield mutual benefits. This review evaluates existing cogeneration studies to recommend promising research directions for sustainable development applications such as simultaneous freshwater production and cold storage refrigeration. Compared to recent reviews of combined desalination and cooling systems, the novelty of this review is in its focus on refrigeration temperatures suitable for fresh food storage (between 0–15 °C), differentiating hybrid systems as Integrated or Coupled, and highlighting the potential technical and economic synergies between refrigeration and desalination systems for sustainable development applications. The key aspects examined included (1) capacity of desalination and refrigeration, (2) source of water and potential contaminants, (3) system design and synergies, (4) efficiency of energy and material resources, and (5) integration with renewable energy sources. The primary synergy in integrated systems was the simultaneous low-temperature evaporation of water and chilling of a cooling fluid. In coupled systems, the synergy comes from the usage of waste heat from refrigeration systems to drive thermal desalination processes. Regarding performance, the systems with the highest water recovery rates and thermal desalination efficiencies are hybrid multiple effect distillation systems. Promising directions for future research include experimentally validating numerically derived inferences, achieving deeper heat integration to improve system efficiency, and developing passive measures such as indirect evaporative cooling for simultaneous dehumidification, cooling, and water production.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119717"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002407","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Within the water-energy-food nexus, desalination and refrigeration cogeneration systems are able to address pressing sustainable development goals. Such systems exploit the synergy between the two processes to yield mutual benefits. This review evaluates existing cogeneration studies to recommend promising research directions for sustainable development applications such as simultaneous freshwater production and cold storage refrigeration. Compared to recent reviews of combined desalination and cooling systems, the novelty of this review is in its focus on refrigeration temperatures suitable for fresh food storage (between 0–15 °C), differentiating hybrid systems as Integrated or Coupled, and highlighting the potential technical and economic synergies between refrigeration and desalination systems for sustainable development applications. The key aspects examined included (1) capacity of desalination and refrigeration, (2) source of water and potential contaminants, (3) system design and synergies, (4) efficiency of energy and material resources, and (5) integration with renewable energy sources. The primary synergy in integrated systems was the simultaneous low-temperature evaporation of water and chilling of a cooling fluid. In coupled systems, the synergy comes from the usage of waste heat from refrigeration systems to drive thermal desalination processes. Regarding performance, the systems with the highest water recovery rates and thermal desalination efficiencies are hybrid multiple effect distillation systems. Promising directions for future research include experimentally validating numerically derived inferences, achieving deeper heat integration to improve system efficiency, and developing passive measures such as indirect evaporative cooling for simultaneous dehumidification, cooling, and water production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信