Regiochemistry and Side-chain Engineering Enable Efficient N-type Mixed Conducting Polymers

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingyu Ma, Linlong Zhang, Minhu Huang, Yazhuo Kuang, Hangyang Li, Huanzhou Yang, Tangqing Yao, Gang Ye, Shuyan Shao, Myung-Han Yoon, Jian Liu
{"title":"Regiochemistry and Side-chain Engineering Enable Efficient N-type Mixed Conducting Polymers","authors":"Mingyu Ma, Linlong Zhang, Minhu Huang, Yazhuo Kuang, Hangyang Li, Huanzhou Yang, Tangqing Yao, Gang Ye, Shuyan Shao, Myung-Han Yoon, Jian Liu","doi":"10.1002/anie.202424820","DOIUrl":null,"url":null,"abstract":"Developing high-performance n-type organic mixed ionic-electronic conducting (OMIEC) polymers with simple structural motifs is still challenging. We show that high-performance, low-threshold-voltage n-type OMIEC polymers can be achieved using a simple diketopyrrolopyrrole unit flanked by thiazole groups, which is functionalized with glycolated side chains. Interestingly, the regiospecific sp2-N position in the repeating unit's thiazole governs the polymer chains' solvation and molecular packing. This specific backbone chemistry enhances conjugation efficiency, reduces trap density, and improves electrochemical doping efficiency. Moreover, systematic variation of glycolated side-chain lengths induces a sequential shift in molecular orientation—from edge-on through bimodal to face-on preferential alignment. This structural evolution achieves optimized ionic-electronic transport balance, resulting in exceptional device metrics: a geometrically normalized transconductance of 31.9 S cm-1, a figure-of-merit μC* of 96.3 F cm-1 V-1 s-1, and a threshold voltage of 0.31 V, positioning these materials among the highest-performing n-type OMIECs. An organic complementary inverter made from the optimized n-type OMIEC polymer and a reported p-type polymer exhibits a voltage gain of 198 VV-1, effectively amplifying the ECG signal and enhancing signal quality. This work establishes structure-property guidelines for designing bioelectronic n-type OMIECs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"33 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424820","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance n-type organic mixed ionic-electronic conducting (OMIEC) polymers with simple structural motifs is still challenging. We show that high-performance, low-threshold-voltage n-type OMIEC polymers can be achieved using a simple diketopyrrolopyrrole unit flanked by thiazole groups, which is functionalized with glycolated side chains. Interestingly, the regiospecific sp2-N position in the repeating unit's thiazole governs the polymer chains' solvation and molecular packing. This specific backbone chemistry enhances conjugation efficiency, reduces trap density, and improves electrochemical doping efficiency. Moreover, systematic variation of glycolated side-chain lengths induces a sequential shift in molecular orientation—from edge-on through bimodal to face-on preferential alignment. This structural evolution achieves optimized ionic-electronic transport balance, resulting in exceptional device metrics: a geometrically normalized transconductance of 31.9 S cm-1, a figure-of-merit μC* of 96.3 F cm-1 V-1 s-1, and a threshold voltage of 0.31 V, positioning these materials among the highest-performing n-type OMIECs. An organic complementary inverter made from the optimized n-type OMIEC polymer and a reported p-type polymer exhibits a voltage gain of 198 VV-1, effectively amplifying the ECG signal and enhancing signal quality. This work establishes structure-property guidelines for designing bioelectronic n-type OMIECs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信