{"title":"Condensate decay in a radiation dominated cosmology","authors":"Shuyang Cao, Daniel Boyanovsky","doi":"10.1103/physrevd.111.063530","DOIUrl":null,"url":null,"abstract":"We study the decay of a homogeneous condensate of a massive scalar field of mass m</a:mi></a:mrow></a:math> into massless fields in thermal equilibrium in a radiation dominated cosmology. The model is a for the nonequilibrium dynamics of a misaligned axion condensate decaying into radiation. After consistent field quantization in the cosmological background, we obtain the linearized causal equations of motion for a homogeneous condensate including the finite temperature self-energy corrections up to one loop. The dynamical renormalization group is implemented to obtain the time dependent relaxation rate that describes the decay dynamics of the condensate amplitude from stimulated emission and recombination of massless quanta in the medium. It is explicitly shown that a simple friction term in the equation of motion does not describe correctly the decay of the condensate. During the super-Hubble regime, relevant for ultralight dark matter, the condensate amplitude decays as <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msup><c:mrow><c:mi>e</c:mi></c:mrow><c:mrow><c:mo>−</c:mo><c:mfrac><c:mrow><c:msup><c:mrow><c:mi>g</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msup></c:mrow><c:mrow><c:mn>10</c:mn></c:mrow></c:mfrac><c:msup><c:mrow><c:mi>t</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msup><c:mi>ln</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>1</c:mn><c:mo>/</c:mo><c:mi>m</c:mi><c:mi>t</c:mi><c:mo stretchy=\"false\">)</c:mo></c:mrow></c:msup></c:mrow></c:math>. In the sub-Hubble regime the amplitude decays as <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mrow><g:mi>e</g:mi></g:mrow><g:mrow><g:mo>−</g:mo><g:mi>γ</g:mi><g:mo stretchy=\"false\">(</g:mo><g:mi>t</g:mi><g:mo>;</g:mo><g:mi>T</g:mi><g:mo stretchy=\"false\">(</g:mo><g:mi>t</g:mi><g:mo stretchy=\"false\">)</g:mo><g:mo stretchy=\"false\">)</g:mo><g:mo>/</g:mo><g:mn>2</g:mn></g:mrow></g:msup></g:mrow></g:math> with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>T</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mi>t</m:mi><m:mo stretchy=\"false\">)</m:mo><m:mo>=</m:mo><m:msub><m:mi>T</m:mi><m:mn>0</m:mn></m:msub><m:mo>/</m:mo><m:mi>a</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mi>t</m:mi><m:mo stretchy=\"false\">)</m:mo></m:math>; therefore, the finite temperature contribution to the decay rate vanishes fast during the expansion. A main conclusion is that a phenomenological friction term is inadequate to describe the decay in the super-Hubble regime, and the decay function <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>γ</s:mi><s:mo stretchy=\"false\">(</s:mo><s:mi>t</s:mi><s:mo stretchy=\"false\">)</s:mo></s:math> is always than that from a local friction term as a consequence of the cosmological expansion. For ultralight dark matter, the timescale, during which transient dynamics is sensitive to cosmological expansion and a local friction term is inadequate, is much longer. A friction term always the timescale of decay in the sub-Hubble case. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"33 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063530","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the decay of a homogeneous condensate of a massive scalar field of mass m into massless fields in thermal equilibrium in a radiation dominated cosmology. The model is a for the nonequilibrium dynamics of a misaligned axion condensate decaying into radiation. After consistent field quantization in the cosmological background, we obtain the linearized causal equations of motion for a homogeneous condensate including the finite temperature self-energy corrections up to one loop. The dynamical renormalization group is implemented to obtain the time dependent relaxation rate that describes the decay dynamics of the condensate amplitude from stimulated emission and recombination of massless quanta in the medium. It is explicitly shown that a simple friction term in the equation of motion does not describe correctly the decay of the condensate. During the super-Hubble regime, relevant for ultralight dark matter, the condensate amplitude decays as e−g210t2ln(1/mt). In the sub-Hubble regime the amplitude decays as e−γ(t;T(t))/2 with T(t)=T0/a(t); therefore, the finite temperature contribution to the decay rate vanishes fast during the expansion. A main conclusion is that a phenomenological friction term is inadequate to describe the decay in the super-Hubble regime, and the decay function γ(t) is always than that from a local friction term as a consequence of the cosmological expansion. For ultralight dark matter, the timescale, during which transient dynamics is sensitive to cosmological expansion and a local friction term is inadequate, is much longer. A friction term always the timescale of decay in the sub-Hubble case. Published by the American Physical Society2025
我们研究了一个质量为m的大质量标量场的均匀凝聚态在辐射主导的宇宙学热平衡中向无质量场的衰变。该模型是一个失向轴子凝聚体衰变成辐射的非平衡动力学模型。在宇宙学背景下进行一致场量子化后,我们得到了包含有限温度自能修正的齐次凝聚体的线性化运动因果方程。采用动态重整化群,得到了描述介质中无质量量子受激发射和复合产生的凝聚振幅衰减动力学的随时间弛豫率。明确地表明,运动方程中一个简单的摩擦项不能正确地描述凝聚体的衰变。在与超轻暗物质相关的超哈勃状态下,凝聚态振幅衰减为e - g210t2ln(1/mt)。在亚哈勃区,振幅衰减为e−γ(t; t (t))/2, t (t)=T0/a(t);因此,有限温度对衰减率的贡献在膨胀过程中迅速消失。一个主要的结论是,现象摩擦项不足以描述超级哈勃体系中的衰变,并且作为宇宙膨胀的结果,衰变函数γ(t)总是比局部摩擦项的衰变函数要大。对于超轻暗物质,其瞬态动力学对宇宙膨胀敏感且局部摩擦项不足的时间尺度要长得多。在次哈勃情况下,摩擦项总是衰变的时间标度。2025年由美国物理学会出版
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.