{"title":"Phytochemical-Loaded Thermo-responsive Liposome for Synergistic Treatment of Methicillin-Resistant <i>Staphylococcus aureus</i> Infection.","authors":"Sidi Zheng, Xinshu Zou, Yanru Wei, Xilong Cui, Shuang Cai, Xiubo Li, Zhiyun Zhang, Yanhua Li","doi":"10.34133/bmr.0159","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing emergence and prevalence of multidrug-resistant bacteria accelerate the desire for the development of new antibacterial strategies. Although antibacterial phytochemicals are a promising approach for long-term treatment of resistant bacteria, their low antibacterial activity and poor solubility hinder their practical applications. Here, the natural antibacterial compound sanguinarine (SG) together with gallic acid-ferrous coordination nanoparticles (GA-Fe(II) NPs) was encapsulated in a near-infrared (NIR)-activated thermo-responsive liposome. By virtue of the photothermal effect of GA-Fe(II) NPs, the nanoplatform released SG on demand upon NIR irradiation. Additionally, the heat can boost the Fenton reaction triggered by GA-Fe(II) NPs to generate hydroxyl radicals and perform sterilization. By coupling with photothermal therapy, chemodynamic therapy, and SG-based pharmacotherapy, the platform showed enhanced antibacterial efficiency and an antibiofilm effect toward methicillin-resistant <i>Staphylococcus aureus</i> and reduced the risk of developing new bacterial resistance. This antibacterial system displayed excellent antibacterial activity in a methicillin-resistant <i>S. aureus</i>-caused skin abscess, demonstrating its potential clinical application. Moreover, transcription analysis clarified that the platform achieved a synergistic antibacterial effect by attacking the cell membrane, inducing energy metabolism disorder, inhibiting nucleic acid synthesis, etc. The developed NIR-controlled phytochemical-loaded platform offers new possibilities for killing antibiotic-resistant bacteria and avoiding bacterial resistance, making it contributory in the fields of anti-infective therapy and precision medicine.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0159"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ever-increasing emergence and prevalence of multidrug-resistant bacteria accelerate the desire for the development of new antibacterial strategies. Although antibacterial phytochemicals are a promising approach for long-term treatment of resistant bacteria, their low antibacterial activity and poor solubility hinder their practical applications. Here, the natural antibacterial compound sanguinarine (SG) together with gallic acid-ferrous coordination nanoparticles (GA-Fe(II) NPs) was encapsulated in a near-infrared (NIR)-activated thermo-responsive liposome. By virtue of the photothermal effect of GA-Fe(II) NPs, the nanoplatform released SG on demand upon NIR irradiation. Additionally, the heat can boost the Fenton reaction triggered by GA-Fe(II) NPs to generate hydroxyl radicals and perform sterilization. By coupling with photothermal therapy, chemodynamic therapy, and SG-based pharmacotherapy, the platform showed enhanced antibacterial efficiency and an antibiofilm effect toward methicillin-resistant Staphylococcus aureus and reduced the risk of developing new bacterial resistance. This antibacterial system displayed excellent antibacterial activity in a methicillin-resistant S. aureus-caused skin abscess, demonstrating its potential clinical application. Moreover, transcription analysis clarified that the platform achieved a synergistic antibacterial effect by attacking the cell membrane, inducing energy metabolism disorder, inhibiting nucleic acid synthesis, etc. The developed NIR-controlled phytochemical-loaded platform offers new possibilities for killing antibiotic-resistant bacteria and avoiding bacterial resistance, making it contributory in the fields of anti-infective therapy and precision medicine.