Phytochemical-Loaded Thermo-responsive Liposome for Synergistic Treatment of Methicillin-Resistant Staphylococcus aureus Infection.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0159
Sidi Zheng, Xinshu Zou, Yanru Wei, Xilong Cui, Shuang Cai, Xiubo Li, Zhiyun Zhang, Yanhua Li
{"title":"Phytochemical-Loaded Thermo-responsive Liposome for Synergistic Treatment of Methicillin-Resistant <i>Staphylococcus aureus</i> Infection.","authors":"Sidi Zheng, Xinshu Zou, Yanru Wei, Xilong Cui, Shuang Cai, Xiubo Li, Zhiyun Zhang, Yanhua Li","doi":"10.34133/bmr.0159","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing emergence and prevalence of multidrug-resistant bacteria accelerate the desire for the development of new antibacterial strategies. Although antibacterial phytochemicals are a promising approach for long-term treatment of resistant bacteria, their low antibacterial activity and poor solubility hinder their practical applications. Here, the natural antibacterial compound sanguinarine (SG) together with gallic acid-ferrous coordination nanoparticles (GA-Fe(II) NPs) was encapsulated in a near-infrared (NIR)-activated thermo-responsive liposome. By virtue of the photothermal effect of GA-Fe(II) NPs, the nanoplatform released SG on demand upon NIR irradiation. Additionally, the heat can boost the Fenton reaction triggered by GA-Fe(II) NPs to generate hydroxyl radicals and perform sterilization. By coupling with photothermal therapy, chemodynamic therapy, and SG-based pharmacotherapy, the platform showed enhanced antibacterial efficiency and an antibiofilm effect toward methicillin-resistant <i>Staphylococcus aureus</i> and reduced the risk of developing new bacterial resistance. This antibacterial system displayed excellent antibacterial activity in a methicillin-resistant <i>S. aureus</i>-caused skin abscess, demonstrating its potential clinical application. Moreover, transcription analysis clarified that the platform achieved a synergistic antibacterial effect by attacking the cell membrane, inducing energy metabolism disorder, inhibiting nucleic acid synthesis, etc. The developed NIR-controlled phytochemical-loaded platform offers new possibilities for killing antibiotic-resistant bacteria and avoiding bacterial resistance, making it contributory in the fields of anti-infective therapy and precision medicine.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0159"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-increasing emergence and prevalence of multidrug-resistant bacteria accelerate the desire for the development of new antibacterial strategies. Although antibacterial phytochemicals are a promising approach for long-term treatment of resistant bacteria, their low antibacterial activity and poor solubility hinder their practical applications. Here, the natural antibacterial compound sanguinarine (SG) together with gallic acid-ferrous coordination nanoparticles (GA-Fe(II) NPs) was encapsulated in a near-infrared (NIR)-activated thermo-responsive liposome. By virtue of the photothermal effect of GA-Fe(II) NPs, the nanoplatform released SG on demand upon NIR irradiation. Additionally, the heat can boost the Fenton reaction triggered by GA-Fe(II) NPs to generate hydroxyl radicals and perform sterilization. By coupling with photothermal therapy, chemodynamic therapy, and SG-based pharmacotherapy, the platform showed enhanced antibacterial efficiency and an antibiofilm effect toward methicillin-resistant Staphylococcus aureus and reduced the risk of developing new bacterial resistance. This antibacterial system displayed excellent antibacterial activity in a methicillin-resistant S. aureus-caused skin abscess, demonstrating its potential clinical application. Moreover, transcription analysis clarified that the platform achieved a synergistic antibacterial effect by attacking the cell membrane, inducing energy metabolism disorder, inhibiting nucleic acid synthesis, etc. The developed NIR-controlled phytochemical-loaded platform offers new possibilities for killing antibiotic-resistant bacteria and avoiding bacterial resistance, making it contributory in the fields of anti-infective therapy and precision medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信