How AI can help us beat AMR.

Autumn Arnold, Stewart McLellan, Jonathan M Stokes
{"title":"How AI can help us beat AMR.","authors":"Autumn Arnold, Stewart McLellan, Jonathan M Stokes","doi":"10.1038/s44259-025-00085-4","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is an urgent public health threat. Advancements in artificial intelligence (AI) and increases in computational power have resulted in the adoption of AI for biological tasks. This review explores the application of AI in bacterial infection diagnostics, AMR surveillance, and antibiotic discovery. We summarize contemporary AI models applied to each of these domains, important considerations when applying AI across diverse tasks, and current limitations in the field.</p>","PeriodicalId":520007,"journal":{"name":"npj antimicrobials and resistance","volume":"3 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj antimicrobials and resistance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44259-025-00085-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance (AMR) is an urgent public health threat. Advancements in artificial intelligence (AI) and increases in computational power have resulted in the adoption of AI for biological tasks. This review explores the application of AI in bacterial infection diagnostics, AMR surveillance, and antibiotic discovery. We summarize contemporary AI models applied to each of these domains, important considerations when applying AI across diverse tasks, and current limitations in the field.

人工智能如何帮助我们战胜抗生素耐药性。
抗菌素耐药性(AMR)是一项紧迫的公共卫生威胁。人工智能(AI)的进步和计算能力的提高导致了人工智能在生物任务中的应用。本文综述了人工智能在细菌感染诊断、抗菌素耐药性监测和抗生素发现等方面的应用。我们总结了应用于这些领域的当代人工智能模型,在不同任务中应用人工智能时的重要考虑因素,以及该领域当前的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信