Data analytics practices and reporting strategies in senior football: insights into athlete health and performance from over 200 practitioners worldwide.

Antonio Dello Iacono, Naomi Datson, Jo Clubb, Mathieu Lacome, Adam Sullivan, Tzlil Shushan
{"title":"Data analytics practices and reporting strategies in senior football: insights into athlete health and performance from over 200 practitioners worldwide.","authors":"Antonio Dello Iacono, Naomi Datson, Jo Clubb, Mathieu Lacome, Adam Sullivan, Tzlil Shushan","doi":"10.1080/24733938.2025.2476478","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the rise of data generation in football, the expertise of data analytics within the sport is relatively underdeveloped. To further understand the landscape, a cross-sectional, observational study design was used to survey practitioners in senior, professional, or semi-professional football. Areas of interest included the personnel involved (the 'who'), the data collected (the 'what'), and the analytical techniques employed (the 'how'). A total of 206 practitioners completed an online survey, with representation from all six FIFA confederations. Of the 206 respondents, 86% were male, 13% female, and 1% preferred not to disclose their gender. Respondents were categorised as working in either the performance (73%), data (18%), or medical (9%) department. Heterogeneity was observed in responses across all departments regarding training load metrics, outcome metrics, methodological attributes, and measurement properties. Evidence sources used prior to implementing a new metric varied between departments, with performance (63%) and medical (67%) staff relying on professional industry and/or community, while data staff (57%) utilised more in-house projects. The analytical approach used most frequently was exploratory data analysis (90%), with modelling, forecasting, and predicting the least frequent (54%). Respondents reported using a mix of solutions for data storage, aggregating and analysing, and reporting and visualising data. Spreadsheets were cited as a popular solution for data wrangling and reporting tasks. The findings provide an overview of current data ecosystems and information systems in modern football organisations. These results can be used to improve data analytics service provision in football by helping identify areas for development and progression.</p>","PeriodicalId":74767,"journal":{"name":"Science & medicine in football","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & medicine in football","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24733938.2025.2476478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the rise of data generation in football, the expertise of data analytics within the sport is relatively underdeveloped. To further understand the landscape, a cross-sectional, observational study design was used to survey practitioners in senior, professional, or semi-professional football. Areas of interest included the personnel involved (the 'who'), the data collected (the 'what'), and the analytical techniques employed (the 'how'). A total of 206 practitioners completed an online survey, with representation from all six FIFA confederations. Of the 206 respondents, 86% were male, 13% female, and 1% preferred not to disclose their gender. Respondents were categorised as working in either the performance (73%), data (18%), or medical (9%) department. Heterogeneity was observed in responses across all departments regarding training load metrics, outcome metrics, methodological attributes, and measurement properties. Evidence sources used prior to implementing a new metric varied between departments, with performance (63%) and medical (67%) staff relying on professional industry and/or community, while data staff (57%) utilised more in-house projects. The analytical approach used most frequently was exploratory data analysis (90%), with modelling, forecasting, and predicting the least frequent (54%). Respondents reported using a mix of solutions for data storage, aggregating and analysing, and reporting and visualising data. Spreadsheets were cited as a popular solution for data wrangling and reporting tasks. The findings provide an overview of current data ecosystems and information systems in modern football organisations. These results can be used to improve data analytics service provision in football by helping identify areas for development and progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信