Partially substrateless microchannels for direct monitoring of interfacial dynamics in hydrophobic surfaces.

Ellen Bold, Sebastian Zimmermann, Clarissa Schönecker, Egbert Oesterschulze
{"title":"Partially substrateless microchannels for direct monitoring of interfacial dynamics in hydrophobic surfaces.","authors":"Ellen Bold, Sebastian Zimmermann, Clarissa Schönecker, Egbert Oesterschulze","doi":"10.1038/s44172-025-00386-6","DOIUrl":null,"url":null,"abstract":"<p><p>Superhydrophobic and liquid-infused surfaces are the most prominent techniques to achieve drag reduction in microchannels. However, they have specific drawbacks such as costly fabrication of complex and mechanically sensitive surfaces, surfaces susceptible to lubricant abrasion or involve hazardous chemicals. We present a partially substrateless microchannel whose upper wall features a large no-shear air/water meniscus at atmospheric pressure. On this wall, a self-assembled monolayer of hydrophobic alkyl silane was bonded covalently. Flow experiments reveal a drag reduction of up to 25% although only 4% of the wall fulfils the no-shear condition. These experiments demonstrated long-term stability and self-healing properties. Furthermore, White Light Interferometry (WLI) was used for direct monitoring of interfacial dynamics. By optical investigation of the full meniscus topography the contact-free evaluation of the spatially resolved static pressure distribution was possible. Conducted numerical simulations are in good agreement with the experimental findings and illustrate the drag reduction mechanism.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"46"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00386-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Superhydrophobic and liquid-infused surfaces are the most prominent techniques to achieve drag reduction in microchannels. However, they have specific drawbacks such as costly fabrication of complex and mechanically sensitive surfaces, surfaces susceptible to lubricant abrasion or involve hazardous chemicals. We present a partially substrateless microchannel whose upper wall features a large no-shear air/water meniscus at atmospheric pressure. On this wall, a self-assembled monolayer of hydrophobic alkyl silane was bonded covalently. Flow experiments reveal a drag reduction of up to 25% although only 4% of the wall fulfils the no-shear condition. These experiments demonstrated long-term stability and self-healing properties. Furthermore, White Light Interferometry (WLI) was used for direct monitoring of interfacial dynamics. By optical investigation of the full meniscus topography the contact-free evaluation of the spatially resolved static pressure distribution was possible. Conducted numerical simulations are in good agreement with the experimental findings and illustrate the drag reduction mechanism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信