Biocompatible nanozyme with dual catalytic activities for high-performance multimodality therapy against glioblastoma.

Guihong Lu, Xiaoyan Li, Wenfei Xu, Fan Zhang, Xiang Chen, Huibin Wu, Haibing Dai, Feng Li, Weidong Nie
{"title":"Biocompatible nanozyme with dual catalytic activities for high-performance multimodality therapy against glioblastoma.","authors":"Guihong Lu, Xiaoyan Li, Wenfei Xu, Fan Zhang, Xiang Chen, Huibin Wu, Haibing Dai, Feng Li, Weidong Nie","doi":"10.1088/1748-605X/adc05b","DOIUrl":null,"url":null,"abstract":"<p><p>Nanozymes based on metals have been regarded as a promising candidate in the metabolic reprogramming of low-survival, refractory glioblastoma multiforme (GBM). However, due to size limitations, nanozymes struggle to balance catalytic activity with the ability to cross the blood-brain barrier (BBB), limiting their efficiency in GBM therapy. Herein, we establish a hybrid nanocluster, AuMn NCs, by cross-linking ultrasmall nano-gold (Au) and manganese oxide (MnO<sub>2</sub>), which overcomes the size requirement conflict for integrating catalytic activities, long-period circulation, photothermal effect, glucose consumption, and chemodynamic effect for multimodality treatment against GBM. After administered intravenously, the overall large-size AuMn NCs can escape kidney filtration and cross the BBB for GBM accumulation. Then the individual ultrasmall nano-MnO<sub>2</sub>components effectively catalyze H<sub>2</sub>O<sub>2</sub>degradation as catalase to produce oxygen, which is utilized by individual ultrasmall nano-Au components to consume glucose as glucose oxidase for starvation therapy. The H<sub>2</sub>O<sub>2</sub>generated during Au-catalyzed glucose consumption further facilitates MnO<sub>2</sub>catalytic activity. Such positive feedback overwhelmingly intervenes in the glucose metabolism of GBM. Concurrently, clustered Au-induced photothermal effect and released Mn<sup>2+</sup>-induced chemodynamic effect further contribute to eliminating GBM cells. The versatile clustered nanozyme offers a feasible strategy for the multimodality intervention of GBM.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adc05b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanozymes based on metals have been regarded as a promising candidate in the metabolic reprogramming of low-survival, refractory glioblastoma multiforme (GBM). However, due to size limitations, nanozymes struggle to balance catalytic activity with the ability to cross the blood-brain barrier (BBB), limiting their efficiency in GBM therapy. Herein, we establish a hybrid nanocluster, AuMn NCs, by cross-linking ultrasmall nano-gold (Au) and manganese oxide (MnO2), which overcomes the size requirement conflict for integrating catalytic activities, long-period circulation, photothermal effect, glucose consumption, and chemodynamic effect for multimodality treatment against GBM. After administered intravenously, the overall large-size AuMn NCs can escape kidney filtration and cross the BBB for GBM accumulation. Then the individual ultrasmall nano-MnO2components effectively catalyze H2O2degradation as catalase to produce oxygen, which is utilized by individual ultrasmall nano-Au components to consume glucose as glucose oxidase for starvation therapy. The H2O2generated during Au-catalyzed glucose consumption further facilitates MnO2catalytic activity. Such positive feedback overwhelmingly intervenes in the glucose metabolism of GBM. Concurrently, clustered Au-induced photothermal effect and released Mn2+-induced chemodynamic effect further contribute to eliminating GBM cells. The versatile clustered nanozyme offers a feasible strategy for the multimodality intervention of GBM.

具有双重催化活性的生物相容性纳米酶,用于针对胶质母细胞瘤的高效多模式疗法。
基于金属的纳米酶被认为是低存活率、难治性多形性胶质母细胞瘤(GBM)代谢重编程的一个有前途的候选酶。然而,由于尺寸限制,纳米酶难以平衡催化活性与穿越血脑屏障(BBB)的能力,限制了它们在GBM治疗中的效率。本文通过超小纳米金(Au)和氧化锰(MnO2)的交联,建立了一种杂化簇状纳米酶(AM NCs),克服了在多模式治疗GBM中整合催化活性、长周期循环、光热效应和化学动力学效应的尺寸要求冲突。经静脉给药后,整体大尺寸AM NCs可以逃脱肾脏滤过并穿过血脑屏障,形成GBM。然后,单个超微纳米氧化锰(MnO2)组分作为过氧化氢酶有效催化H2O2降解产生氧气,并被单个超微纳米金(Au)组分作为葡萄糖氧化酶消耗葡萄糖。在au催化葡萄糖消耗过程中产生的H2O2进一步促进了MnO2的催化活性。这种正反馈压倒性地干预了GBM的葡萄糖代谢。同时,聚集的au诱导的光热效应和释放的Mn2+诱导的化学动力学效应进一步有助于消除GBM细胞。多功能簇状纳米酶为GBM的多模式干预提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信