Personalising Antidepressant Treatment for Unipolar Depression Combining Individual Choices, Risks and big Data: The PETRUSHKA Tool: Personnalisation du traitement antidépresseur de la dépression unipolaire associant choix individuels, risques et mégadonnées: l'outil PETRUSHKA.

IF 3.3 3区 医学 Q2 PSYCHIATRY
Edoardo G Ostinelli, Matt Jaquiery, Qiang Liu, Rania Elgarf, Nyla Haque, Jennifer Potts, Zhenpeng Li, Orestis Efthimiou, Sarah Markham, Roger Ede, Laurence Wainwright, Karen Barros Parron Fernandes, Bianca Barros Parron Fernandes, Paulo Victor Carpaneze Dalaqua, Anneka Tomlinson, Katharine A Smith, Caroline Zangani, Franco De Crescenzo, Marcos Liboni, Benoit H Mulsant, Andrea Cipriani
{"title":"Personalising Antidepressant Treatment for Unipolar Depression Combining Individual Choices, Risks and big Data: The PETRUSHKA Tool: Personnalisation du traitement antidépresseur de la dépression unipolaire associant choix individuels, risques et mégadonnées: l'outil PETRUSHKA.","authors":"Edoardo G Ostinelli, Matt Jaquiery, Qiang Liu, Rania Elgarf, Nyla Haque, Jennifer Potts, Zhenpeng Li, Orestis Efthimiou, Sarah Markham, Roger Ede, Laurence Wainwright, Karen Barros Parron Fernandes, Bianca Barros Parron Fernandes, Paulo Victor Carpaneze Dalaqua, Anneka Tomlinson, Katharine A Smith, Caroline Zangani, Franco De Crescenzo, Marcos Liboni, Benoit H Mulsant, Andrea Cipriani","doi":"10.1177/07067437251322399","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveWe summarize the key steps to develop and assess an innovative online, evidence-based tool that supports shared decision-making in routine care to personalize antidepressant treatment in adults with depression. This PETRUSHKA tool is part of the PETRUSHKA trial (Personalize antidEpressant Treatment foR Unipolar depreSsion combining individual cHoices, risKs, and big datA).MethodsThe PETRUSHKA tool: (a) is based on prediction models, which use a combination of advanced analytics, i.e., traditional statistics, and machine learning methods; (b) utilizes electronic health records from primary care patients with depressive disorder in England and data from randomized controlled trials on antidepressants in depression, both at aggregate and individual patient level; (c) incorporates preferences from patients and clinicians (especially about adverse events); (d) generates a ranked list of personalized treatment recommendations to inform the discussion between clinicians and patients, and facilitates the final treatment choice. The PETRUSHKA tool is implemented as a web-based application, accessible from any computer, smartphone or tablet.ResultsWe employed a bespoke algorithm to identify the best antidepressant for each individual patient, using patients' clinical and demographic characteristics and harnessing the power of innovations in digital technology, large datasets and machine learning. We established a dedicated group of patient representatives that were involved in the co-production of the tool, to maximize its impact in real-world clinical practice across the world. To test the tool, we designed an international multi-site, randomized trial (target sample: 504 participants), comparing the PETRUSHKA tool with usual care to personalize pharmacological treatment in patients with depressive disorder across Brazil, Canada and the UK.ConclusionsUsing evidence-based patient decision aids has been recommended to support shared decision-making when quality is assured. Future studies in precision mental health should develop multimodal web tools, incorporating patients' preferences and their individual demographic, cultural, clinical, and genetic characteristics.</p>","PeriodicalId":55283,"journal":{"name":"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie","volume":" ","pages":"7067437251322399"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07067437251322399","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

ObjectiveWe summarize the key steps to develop and assess an innovative online, evidence-based tool that supports shared decision-making in routine care to personalize antidepressant treatment in adults with depression. This PETRUSHKA tool is part of the PETRUSHKA trial (Personalize antidEpressant Treatment foR Unipolar depreSsion combining individual cHoices, risKs, and big datA).MethodsThe PETRUSHKA tool: (a) is based on prediction models, which use a combination of advanced analytics, i.e., traditional statistics, and machine learning methods; (b) utilizes electronic health records from primary care patients with depressive disorder in England and data from randomized controlled trials on antidepressants in depression, both at aggregate and individual patient level; (c) incorporates preferences from patients and clinicians (especially about adverse events); (d) generates a ranked list of personalized treatment recommendations to inform the discussion between clinicians and patients, and facilitates the final treatment choice. The PETRUSHKA tool is implemented as a web-based application, accessible from any computer, smartphone or tablet.ResultsWe employed a bespoke algorithm to identify the best antidepressant for each individual patient, using patients' clinical and demographic characteristics and harnessing the power of innovations in digital technology, large datasets and machine learning. We established a dedicated group of patient representatives that were involved in the co-production of the tool, to maximize its impact in real-world clinical practice across the world. To test the tool, we designed an international multi-site, randomized trial (target sample: 504 participants), comparing the PETRUSHKA tool with usual care to personalize pharmacological treatment in patients with depressive disorder across Brazil, Canada and the UK.ConclusionsUsing evidence-based patient decision aids has been recommended to support shared decision-making when quality is assured. Future studies in precision mental health should develop multimodal web tools, incorporating patients' preferences and their individual demographic, cultural, clinical, and genetic characteristics.

结合个人选择、风险和大数据的单极抑郁症个性化抗抑郁治疗:PETRUSHKA工具:结合个人选择、风险和大数据的单极抑郁症个性化抗抑郁治疗:PETRUSHKA工具。
目的:我们总结了开发和评估一种创新的、基于证据的在线工具的关键步骤,该工具支持在常规护理中共同决策,以个性化成人抑郁症患者的抗抑郁治疗。这个PETRUSHKA工具是PETRUSHKA试验(结合个人选择、风险和大数据的单极抑郁症个性化抗抑郁治疗)的一部分。PETRUSHKA工具:(a)基于预测模型,该模型结合了高级分析,即传统统计和机器学习方法;(b)利用英格兰初级保健抑郁症患者的电子健康记录和抑郁症抗抑郁药随机对照试验的数据,包括总体和个体患者水平;(c)纳入患者和临床医生的偏好(特别是关于不良事件);(d)生成个性化治疗建议的排序列表,以告知临床医生和患者之间的讨论,并促进最终的治疗选择。PETRUSHKA工具作为基于web的应用程序实现,可从任何计算机,智能手机或平板电脑访问。我们采用定制算法,利用患者的临床和人口统计学特征,并利用数字技术、大型数据集和机器学习的创新力量,为每位患者确定最佳抗抑郁药。我们建立了一个专门的患者代表小组,参与该工具的联合生产,以最大限度地发挥其在世界各地的实际临床实践中的影响。为了测试该工具,我们设计了一项国际多地点随机试验(目标样本:504名参与者),将PETRUSHKA工具与巴西、加拿大和英国抑郁症患者的常规护理进行比较,以个性化药物治疗。结论在保证质量的前提下,建议使用循证患者决策辅助工具支持共同决策。未来的精确心理健康研究应该开发多模式网络工具,将患者的偏好和他们个人的人口统计学、文化、临床和遗传特征结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Established in 1956, The Canadian Journal of Psychiatry (The CJP) has been keeping psychiatrists up-to-date on the latest research for nearly 60 years. The CJP provides a forum for psychiatry and mental health professionals to share their findings with researchers and clinicians. The CJP includes peer-reviewed scientific articles analyzing ongoing developments in Canadian and international psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信