William Benman, Pavan Iyengar, Thomas R Mumford, Zikang Huang, Manya Kapoor, Grace Liu, Lukasz J Bugaj
{"title":"Multiplexed dynamic control of temperature to probe and observe mammalian cells.","authors":"William Benman, Pavan Iyengar, Thomas R Mumford, Zikang Huang, Manya Kapoor, Grace Liu, Lukasz J Bugaj","doi":"10.1016/j.cels.2025.101234","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is an important biological stimulus, yet there is a lack of approaches to modulate the temperature of biological samples in a dynamic and high-throughput manner. The thermoPlate is a device for programmable control of temperature in a 96-well plate, compatible with cell culture and microscopy. The thermoPlate maintains feedback control of temperature independently in each well, with minutes-scale heating and cooling through ΔT = 15-20°C. We first used the thermoPlate to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP<sub>53</sub>). We then examined stress granule (SG) formation in response to dynamic heat stress, revealing adaptation of SGs to persistent heat and formation of a memory of stress that prevented SG formation in response to subsequent heat shocks. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena. A record of this paper's transparent peer review process is included in the Supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101234"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature is an important biological stimulus, yet there is a lack of approaches to modulate the temperature of biological samples in a dynamic and high-throughput manner. The thermoPlate is a device for programmable control of temperature in a 96-well plate, compatible with cell culture and microscopy. The thermoPlate maintains feedback control of temperature independently in each well, with minutes-scale heating and cooling through ΔT = 15-20°C. We first used the thermoPlate to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then examined stress granule (SG) formation in response to dynamic heat stress, revealing adaptation of SGs to persistent heat and formation of a memory of stress that prevented SG formation in response to subsequent heat shocks. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena. A record of this paper's transparent peer review process is included in the Supplemental information.