Engineering highly active nuclease enzymes with machine learning and high-throughput screening.

Cell systems Pub Date : 2025-03-19 Epub Date: 2025-03-12 DOI:10.1016/j.cels.2025.101236
Neil Thomas, David Belanger, Chenling Xu, Hanson Lee, Kathleen Hirano, Kosuke Iwai, Vanja Polic, Kendra D Nyberg, Kevin G Hoff, Lucas Frenz, Charlie A Emrich, Jun W Kim, Mariya Chavarha, Abi Ramanan, Jeremy J Agresti, Lucy J Colwell
{"title":"Engineering highly active nuclease enzymes with machine learning and high-throughput screening.","authors":"Neil Thomas, David Belanger, Chenling Xu, Hanson Lee, Kathleen Hirano, Kosuke Iwai, Vanja Polic, Kendra D Nyberg, Kevin G Hoff, Lucas Frenz, Charlie A Emrich, Jun W Kim, Mariya Chavarha, Abi Ramanan, Jeremy J Agresti, Lucy J Colwell","doi":"10.1016/j.cels.2025.101236","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing enzymes to function in novel chemical environments is a central goal of synthetic biology, but optimization is often hindered by a rugged fitness landscape and costly experiments. In this work, we present TeleProt, a machine learning (ML) framework that blends evolutionary and experimental data to design diverse protein libraries, and employ it to improve the catalytic activity of a nuclease enzyme that degrades biofilms that accumulate on chronic wounds. After multiple rounds of high-throughput experiments, TeleProt found a significantly better top-performing enzyme than directed evolution (DE), had a better hit rate at finding diverse, high-activity variants, and was even able to design a high-performance initial library using no prior experimental data. We have released a dataset of 55,000 nuclease variants, one of the most extensive genotype-phenotype enzyme activity landscapes to date, to drive further progress in ML-guided design. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101236"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing enzymes to function in novel chemical environments is a central goal of synthetic biology, but optimization is often hindered by a rugged fitness landscape and costly experiments. In this work, we present TeleProt, a machine learning (ML) framework that blends evolutionary and experimental data to design diverse protein libraries, and employ it to improve the catalytic activity of a nuclease enzyme that degrades biofilms that accumulate on chronic wounds. After multiple rounds of high-throughput experiments, TeleProt found a significantly better top-performing enzyme than directed evolution (DE), had a better hit rate at finding diverse, high-activity variants, and was even able to design a high-performance initial library using no prior experimental data. We have released a dataset of 55,000 nuclease variants, one of the most extensive genotype-phenotype enzyme activity landscapes to date, to drive further progress in ML-guided design. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信