Determining the best mathematical model for implementation of non-pharmaceutical interventions.

IF 2.6 4区 工程技术 Q1 Mathematics
Gabriel McCarthy, Hana M Dobrovolny
{"title":"Determining the best mathematical model for implementation of non-pharmaceutical interventions.","authors":"Gabriel McCarthy, Hana M Dobrovolny","doi":"10.3934/mbe.2025026","DOIUrl":null,"url":null,"abstract":"<p><p>At the onset of the SARS-CoV-2 pandemic in early 2020, only non-pharmaceutical interventions (NPIs) were available to stem the spread of the infection. Much of the early interventions in the US were applied at a state level, with varying levels of strictness and compliance. While NPIs clearly slowed the rate of transmission, it is not clear how these changes are best incorporated into epidemiological models. In order to characterize the effects of early preventative measures, we use a Susceptible-Exposed-Infected-Recovered (SEIR) model and cumulative case counts from US states to analyze the effect of lockdown measures. We test four transition models to simulate the change in transmission rate: instantaneous, linear, exponential, and logarithmic. We find that of the four models examined here, the exponential transition best represents the change in the transmission rate due to implementation of NPIs in the most states, followed by the logistic transition model. The instantaneous and linear models generally lead to poor fits and are the best transition models for the fewest states.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 3","pages":"700-724"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

At the onset of the SARS-CoV-2 pandemic in early 2020, only non-pharmaceutical interventions (NPIs) were available to stem the spread of the infection. Much of the early interventions in the US were applied at a state level, with varying levels of strictness and compliance. While NPIs clearly slowed the rate of transmission, it is not clear how these changes are best incorporated into epidemiological models. In order to characterize the effects of early preventative measures, we use a Susceptible-Exposed-Infected-Recovered (SEIR) model and cumulative case counts from US states to analyze the effect of lockdown measures. We test four transition models to simulate the change in transmission rate: instantaneous, linear, exponential, and logarithmic. We find that of the four models examined here, the exponential transition best represents the change in the transmission rate due to implementation of NPIs in the most states, followed by the logistic transition model. The instantaneous and linear models generally lead to poor fits and are the best transition models for the fewest states.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信