Saleh I Alzahrani, Wael M S Yafooz, Ibrahim A Aljamaan, Ali Alwaleedi, Mohammed Al-Hariri, Gameel Saleh
{"title":"AI-driven health analysis for emerging respiratory diseases: A case study of Yemen patients using COVID-19 data.","authors":"Saleh I Alzahrani, Wael M S Yafooz, Ibrahim A Aljamaan, Ali Alwaleedi, Mohammed Al-Hariri, Gameel Saleh","doi":"10.3934/mbe.2025021","DOIUrl":null,"url":null,"abstract":"<p><p>In low-income and resource-limited countries, distinguishing COVID-19 from other respiratory diseases is challenging due to similar symptoms and the prevalence of comorbidities. In Yemen, acute comorbidities further complicate the differentiation between COVID-19 and other infectious diseases. We explored the use of AI-powered predictive models and classifiers to enhance healthcare preparedness by forecasting respiratory disease trends using COVID-19 data. We developed mathematical models based on autoregressive (AR), moving average (MA), ARMA, and machine and deep learning algorithms to predict daily confirmed deaths. Statistical models were trained on 80% of the data and tested on the remaining 20%, with predicted results compared to actual values. The ARMA model demonstrated promising performance. Additionally, eight machine learning (ML) classifiers and deep learning (DL) models were utilized to identify COVID-19 severity indicators. Among the ML classifiers, the Decision Tree (DT) achieved the highest accuracy at 74.70%, followed closely by Random Forest (RF) at 74.66%. DL models showed comparable accuracy scores, around 70%. In terms of AUC-ROC, the kernel Support Vector Machine (SVM) outperformed others, achieving 71% accuracy, with precision, recall, F-measure, and area under the curve values of 0.7, 0.75, 0.59, and 0.72, respectively. These findings underscore the potential of AI-driven health analysis to optimize resource allocation and enhance forecasting for respiratory diseases.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 3","pages":"554-584"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In low-income and resource-limited countries, distinguishing COVID-19 from other respiratory diseases is challenging due to similar symptoms and the prevalence of comorbidities. In Yemen, acute comorbidities further complicate the differentiation between COVID-19 and other infectious diseases. We explored the use of AI-powered predictive models and classifiers to enhance healthcare preparedness by forecasting respiratory disease trends using COVID-19 data. We developed mathematical models based on autoregressive (AR), moving average (MA), ARMA, and machine and deep learning algorithms to predict daily confirmed deaths. Statistical models were trained on 80% of the data and tested on the remaining 20%, with predicted results compared to actual values. The ARMA model demonstrated promising performance. Additionally, eight machine learning (ML) classifiers and deep learning (DL) models were utilized to identify COVID-19 severity indicators. Among the ML classifiers, the Decision Tree (DT) achieved the highest accuracy at 74.70%, followed closely by Random Forest (RF) at 74.66%. DL models showed comparable accuracy scores, around 70%. In terms of AUC-ROC, the kernel Support Vector Machine (SVM) outperformed others, achieving 71% accuracy, with precision, recall, F-measure, and area under the curve values of 0.7, 0.75, 0.59, and 0.72, respectively. These findings underscore the potential of AI-driven health analysis to optimize resource allocation and enhance forecasting for respiratory diseases.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).