A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis.

IF 2.6 4区 工程技术 Q1 Mathematics
Eduardo Ibargüen-Mondragón, M Victoria Otero-Espinar, Miller Cerón Gómez
{"title":"A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis.","authors":"Eduardo Ibargüen-Mondragón, M Victoria Otero-Espinar, Miller Cerón Gómez","doi":"10.3934/mbe.2025019","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis is the leading cause of death worldwide from a single infectious agent; it has also been declared a threat to humanity by the World Health Organization. New insights indicate that the innate immune response plays a crucial role in determining the outcome of the infection. In this study, we assessed the role of macrophages in the innate immune response through a simple mathematical model. Our results confirm that macrophages provide the primary protective response against <i>Mycobacterium tuberculosis</i>. However, they also highlight the importance of other innate cells in the outcome of infection. Specifically, our findings suggest that, in addition to macrophage activity, the involvement of other innate immune cells is essential for eliminating or controlling bacterial progression, ultimately leading to an adaptive immune response.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 3","pages":"511-527"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis is the leading cause of death worldwide from a single infectious agent; it has also been declared a threat to humanity by the World Health Organization. New insights indicate that the innate immune response plays a crucial role in determining the outcome of the infection. In this study, we assessed the role of macrophages in the innate immune response through a simple mathematical model. Our results confirm that macrophages provide the primary protective response against Mycobacterium tuberculosis. However, they also highlight the importance of other innate cells in the outcome of infection. Specifically, our findings suggest that, in addition to macrophage activity, the involvement of other innate immune cells is essential for eliminating or controlling bacterial progression, ultimately leading to an adaptive immune response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信