{"title":"On the impossibility of increasing the MSY in a multisite Schaefer fishing model.","authors":"Pierre Auger, Tri Nguyen-Huu, Doanh Nguyen-Ngoc","doi":"10.3934/mbe.2025016","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we consider a multisite Schaefer fishing model. The fishery resource grows logistically on each site and is exploited with different fishing efforts. We showed that the Maximum Sustainable Yield (MSY) of the multisite network, when the sites are connected, is always less than or equal to the sum of the MSY of the isolated sites. Equality occurred when the fish population is spatially distributed according to the ideal free distribution (IFD). In this case, the fish had the same access to the resource at each site. We generalized the known result for two sites and the same fishing effort to any number of sites and different fishing efforts. We also discussed how the creation of Marine Protected Areas impacts the fishing efforts. We showed that to minimize the fishing effort to reach the MSY, it is necessary to deploy the entire fishing fleet to the site where the fish is most abundant, the other sites being Marine Protected Areas.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 2","pages":"415-430"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we consider a multisite Schaefer fishing model. The fishery resource grows logistically on each site and is exploited with different fishing efforts. We showed that the Maximum Sustainable Yield (MSY) of the multisite network, when the sites are connected, is always less than or equal to the sum of the MSY of the isolated sites. Equality occurred when the fish population is spatially distributed according to the ideal free distribution (IFD). In this case, the fish had the same access to the resource at each site. We generalized the known result for two sites and the same fishing effort to any number of sites and different fishing efforts. We also discussed how the creation of Marine Protected Areas impacts the fishing efforts. We showed that to minimize the fishing effort to reach the MSY, it is necessary to deploy the entire fishing fleet to the site where the fish is most abundant, the other sites being Marine Protected Areas.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).