Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach.

IF 2.6 4区 工程技术 Q1 Mathematics
Andrew Omame, Sarafa A Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L Bragazzi, Xiaoying Wang, Woldegebriel A Woldegerima, Jude D Kong
{"title":"Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach.","authors":"Andrew Omame, Sarafa A Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L Bragazzi, Xiaoying Wang, Woldegebriel A Woldegerima, Jude D Kong","doi":"10.3934/mbe.2025010","DOIUrl":null,"url":null,"abstract":"<p><p>During the 2022 monkeypox (Mpox) outbreak in non-endemic countries, sexual transmission was identified as the dominant mode of transmission, and particularly affected the community of men who have sex with men (MSM). This community experienced the highest incidence of Mpox cases, exacerbating the public health burden they already face due to the disproportionate impact of HIV. Given the simultaneous spread of HIV and Mpox within the MSM community, it is crucial to understand how these diseases interact. Specifically, since HIV is endemic within this population, understanding its influence on the spread and control of Mpox is essential. In this study, we analyze a mechanistic mathematical model of Mpox to explore the potential impact of HIV on the dynamics of Mpox within the MSM community. The model considered in this work incorporates the transmission dynamics of the two diseases, including antiretroviral therapy (ART) for HIV. We assumed that HIV was already endemic in the population at the onset of the Mpox outbreak. Through our analysis, we derived the Mpox invasion reproduction number within an HIV-endemic setting and established the existence and local asymptotic stability of the Mpox-free equilibrium under these conditions. Furthermore, we demonstrated the existence and local asymptotic stability of an Mpox-endemic equilibrium in an HIV-endemic regime. Notably, our findings revealed that the model exhibits a backward bifurcation, a phenomenon that may not have occurred in the absence of HIV within the population. The public health significance of our results is that the presence of HIV in the MSM community could hinder efforts to control Mpox, allowing the disease to become endemic even when its invasion reproduction number is below one. Additionally, we found that Mpox might be more challenging to control in scenarios where HIV increases susceptibility to Mpox. Finally, consistent with previous studies, our analysis confirms that reducing sexual contact can be effective for controlling the spread of Mpox within the MSM community.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 2","pages":"225-259"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

During the 2022 monkeypox (Mpox) outbreak in non-endemic countries, sexual transmission was identified as the dominant mode of transmission, and particularly affected the community of men who have sex with men (MSM). This community experienced the highest incidence of Mpox cases, exacerbating the public health burden they already face due to the disproportionate impact of HIV. Given the simultaneous spread of HIV and Mpox within the MSM community, it is crucial to understand how these diseases interact. Specifically, since HIV is endemic within this population, understanding its influence on the spread and control of Mpox is essential. In this study, we analyze a mechanistic mathematical model of Mpox to explore the potential impact of HIV on the dynamics of Mpox within the MSM community. The model considered in this work incorporates the transmission dynamics of the two diseases, including antiretroviral therapy (ART) for HIV. We assumed that HIV was already endemic in the population at the onset of the Mpox outbreak. Through our analysis, we derived the Mpox invasion reproduction number within an HIV-endemic setting and established the existence and local asymptotic stability of the Mpox-free equilibrium under these conditions. Furthermore, we demonstrated the existence and local asymptotic stability of an Mpox-endemic equilibrium in an HIV-endemic regime. Notably, our findings revealed that the model exhibits a backward bifurcation, a phenomenon that may not have occurred in the absence of HIV within the population. The public health significance of our results is that the presence of HIV in the MSM community could hinder efforts to control Mpox, allowing the disease to become endemic even when its invasion reproduction number is below one. Additionally, we found that Mpox might be more challenging to control in scenarios where HIV increases susceptibility to Mpox. Finally, consistent with previous studies, our analysis confirms that reducing sexual contact can be effective for controlling the spread of Mpox within the MSM community.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信