Analysing dengue fever spread in Kenya using the Zero-Inflated Poisson model.

IF 0.6 Q4 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Journal of Public Health in Africa Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.4102/jphia.v16i1.781
Lameck Ondieki Agasa, Faith Thuita, Thomas Achia, Antony Karanja
{"title":"Analysing dengue fever spread in Kenya using the Zero-Inflated Poisson model.","authors":"Lameck Ondieki Agasa, Faith Thuita, Thomas Achia, Antony Karanja","doi":"10.4102/jphia.v16i1.781","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dengue fever (DF), transmitted by <i>Aedes</i> mosquitoes, remains a major public health concern in tropical and subtropical regions. Understanding the influence of climatic variables on DF incidence is essential for improving outbreak prediction and control measures.</p><p><strong>Aim: </strong>This study analysed the impact of climatic factors on DF incidence in Kenya using a Zero-Inflated Poisson (ZIP) model.</p><p><strong>Setting: </strong>The study focused on DF cases in Kenya from 2019 to 2021.</p><p><strong>Methods: </strong>A ZIP model was applied to monthly dengue case data and associated climatic variables, such as temperature, rainfall, and humidity. The model addresses over-dispersion and excess zeros in the data, providing a more accurate depiction of DF dynamics.</p><p><strong>Results: </strong>The ZIP model revealed significant associations between climatic variables and DF incidence. Humidity (β = 0.0578, standard error [s.e.] = 0.0024, <i>z</i> = 24.157, <i>p</i> < 2e-16) and temperature (β = 0.0558, s.e. = 0.0053, <i>z</i> = 10.497, <i>p</i> < 0.01) showed a positive relationship with dengue cases, while rainfall (β = -0.0045, s.e. = 0.0003, <i>z</i> = -16.523, <i>p</i> < 0.01) had a significant negative effect. The over-dispersion test confirmed excess variability in the data (O statistic = 456.3, <i>p</i> = 0.004), and the Vuong test supported the use of the ZIP model over a standard Poisson model. Model comparison indicated superior fit for the ZIP model (akaike information criterion [AIC] = 5230.959 vs. 27061.367 for Poisson), effectively accounting for zero-inflation.</p><p><strong>Conclusion: </strong>The results suggest that higher humidity and temperature favor dengue transmission, while heavy rainfall may disrupt mosquito breeding, reducing cases. These findings provide a basis for targeted public health interventions.</p><p><strong>Contribution: </strong>This study enhances understanding of DF-climate interactions in Kenya, supporting the application of ZIP modelling for improved disease surveillance and control strategies.</p>","PeriodicalId":44723,"journal":{"name":"Journal of Public Health in Africa","volume":"16 1","pages":"781"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Public Health in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/jphia.v16i1.781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dengue fever (DF), transmitted by Aedes mosquitoes, remains a major public health concern in tropical and subtropical regions. Understanding the influence of climatic variables on DF incidence is essential for improving outbreak prediction and control measures.

Aim: This study analysed the impact of climatic factors on DF incidence in Kenya using a Zero-Inflated Poisson (ZIP) model.

Setting: The study focused on DF cases in Kenya from 2019 to 2021.

Methods: A ZIP model was applied to monthly dengue case data and associated climatic variables, such as temperature, rainfall, and humidity. The model addresses over-dispersion and excess zeros in the data, providing a more accurate depiction of DF dynamics.

Results: The ZIP model revealed significant associations between climatic variables and DF incidence. Humidity (β = 0.0578, standard error [s.e.] = 0.0024, z = 24.157, p < 2e-16) and temperature (β = 0.0558, s.e. = 0.0053, z = 10.497, p < 0.01) showed a positive relationship with dengue cases, while rainfall (β = -0.0045, s.e. = 0.0003, z = -16.523, p < 0.01) had a significant negative effect. The over-dispersion test confirmed excess variability in the data (O statistic = 456.3, p = 0.004), and the Vuong test supported the use of the ZIP model over a standard Poisson model. Model comparison indicated superior fit for the ZIP model (akaike information criterion [AIC] = 5230.959 vs. 27061.367 for Poisson), effectively accounting for zero-inflation.

Conclusion: The results suggest that higher humidity and temperature favor dengue transmission, while heavy rainfall may disrupt mosquito breeding, reducing cases. These findings provide a basis for targeted public health interventions.

Contribution: This study enhances understanding of DF-climate interactions in Kenya, supporting the application of ZIP modelling for improved disease surveillance and control strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Public Health in Africa
Journal of Public Health in Africa PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
自引率
0.00%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Public Health in Africa (JPHiA) is a peer-reviewed, academic journal that focuses on health issues in the African continent. The journal editors seek high quality original articles on public health related issues, reviews, comments and more. The aim of the journal is to move public health discourse from the background to the forefront. The success of Africa’s struggle against disease depends on public health approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信