{"title":"Novel <i>CLCNKB</i> Mutation in Two Siblings With Classic Bartter Syndrome.","authors":"Navid Roodaki, Leigh Michelle Salinas, Ebner Bon G Maceda, Jorelyn Frias","doi":"10.1155/crig/8862780","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Bartter syndrome is a rare genetic illness characterized by impairment in kidney function caused by different gene defects. The primary pathogenic mechanism of Bartter syndrome is defective salt reabsorption, predominantly in the thick ascending limb of the loop of Henle. <b>Case Presentation:</b> Here, we present a case series between 2 siblings diagnosed with Bartter syndrome through clinical and genetic analyses. Both patients presented with severe dehydration secondary to polyuria which caused persistent electrolyte imbalances. However, the second sibling presented with hydrocephalus which may be associated with Bartter Syndrome. Genetic analysis determined the presence of a known pathogenic mutation and a novel mutation in the CLCNKB variant. <b>Conclusions:</b> Bartter syndrome Type III is a genetic disorder that must be identified clinically without delay, as it typically manifests as acute dehydration due to polyuria and vomiting. Hydrocephalus, although cannot be concluded to be a complication of Bartter syndrome, can be associated due to several electrolyte imbalances involved in this condition. Genetic testing is essential for identifying unidentified pathogenic variants that will aid future patients diagnosed with this condition. Genetic counseling is of the utmost importance for these families affected by the condition in question.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2025 ","pages":"8862780"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Reports in Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/crig/8862780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bartter syndrome is a rare genetic illness characterized by impairment in kidney function caused by different gene defects. The primary pathogenic mechanism of Bartter syndrome is defective salt reabsorption, predominantly in the thick ascending limb of the loop of Henle. Case Presentation: Here, we present a case series between 2 siblings diagnosed with Bartter syndrome through clinical and genetic analyses. Both patients presented with severe dehydration secondary to polyuria which caused persistent electrolyte imbalances. However, the second sibling presented with hydrocephalus which may be associated with Bartter Syndrome. Genetic analysis determined the presence of a known pathogenic mutation and a novel mutation in the CLCNKB variant. Conclusions: Bartter syndrome Type III is a genetic disorder that must be identified clinically without delay, as it typically manifests as acute dehydration due to polyuria and vomiting. Hydrocephalus, although cannot be concluded to be a complication of Bartter syndrome, can be associated due to several electrolyte imbalances involved in this condition. Genetic testing is essential for identifying unidentified pathogenic variants that will aid future patients diagnosed with this condition. Genetic counseling is of the utmost importance for these families affected by the condition in question.
背景:巴特综合征是一种罕见的遗传性疾病,其特征是由不同基因缺陷引起的肾功能损害。巴特综合征的主要致病机制是盐重吸收缺陷,主要发生在亨勒襻的粗升支。病例介绍:在此,我们介绍一个通过临床和基因分析确诊为巴特综合征的两兄妹之间的系列病例。两名患者均因多尿症继发严重脱水,导致持续的电解质失衡。然而,第二个兄弟姐妹出现的脑积水可能与巴特综合征有关。遗传分析确定了一个已知的致病基因突变和一个新的 CLCNKB 变异基因突变。结论:巴特综合征 III 型是一种遗传性疾病,临床上必须及时发现,因为它通常表现为多尿和呕吐导致的急性脱水。虽然不能断定脑积水是巴特综合征的并发症,但由于该病涉及多种电解质失衡,因此可能与脑积水有关。基因检测对于确定未发现的致病变异至关重要,这将有助于今后确诊为该病的患者。遗传咨询对这些受该病症影响的家庭至关重要。