Using Genetics, Genomics, and Transcriptomics to Identify Therapeutic Targets in Juvenile Idiopathic Arthritis.

IF 3.3 Q2 GENETICS & HEREDITY
Evan Tarbell, James N Jarvis
{"title":"Using Genetics, Genomics, and Transcriptomics to Identify Therapeutic Targets in Juvenile Idiopathic Arthritis.","authors":"Evan Tarbell, James N Jarvis","doi":"10.1016/j.xhgg.2025.100424","DOIUrl":null,"url":null,"abstract":"<p><p>Despite progress in improving outcomes for oligoarticular and polyarticular juvenile idiopathic arthritis (JIA), the field still faces considerable challenges. More than half of adults who had JIA continue to have active disease and have developed functional limitations. Medication side-effects are common and intrusive. Thus, the field continues to search for therapeutic agents that target specific aspects of disease pathobiology and will be accompanied by fewer and less intrusive side effects. We identified 28 candidate target genes that were associated with JIA according to Open Targets Genetics and were also differentially expressed in the CD4+ T cells of children with active JIA patients (when compared to healthy controls). Of the 28 candidates, the strongest new target to emerge was homeodomain interacting kinase (HIPK1), which suppresses T cell activation and is within the PTPN22 locus tagged by rs6679677. This locus includes an enhancer element that contacts the HIPK1 promoter, and HIPK1 shows decreased expression in JIA CD4+ T cells when compared to controls. Gene Ontology terms associated with HIPK1 were overrepresented among the differentially expressed genes between JIA and controls and PML, a known co-regulator of HIPK1, showed a similar suppressed gene expression profile. Two downstream transcription factors of HIPK1, TP53 and GATA4, showed enriched binding patterns near the promoters of JIA up-regulated genes. Taken together, these data suggest a pathogenic role for HIPK1 in JIA and make it a prime candidate for therapeutic modulation.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100424"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite progress in improving outcomes for oligoarticular and polyarticular juvenile idiopathic arthritis (JIA), the field still faces considerable challenges. More than half of adults who had JIA continue to have active disease and have developed functional limitations. Medication side-effects are common and intrusive. Thus, the field continues to search for therapeutic agents that target specific aspects of disease pathobiology and will be accompanied by fewer and less intrusive side effects. We identified 28 candidate target genes that were associated with JIA according to Open Targets Genetics and were also differentially expressed in the CD4+ T cells of children with active JIA patients (when compared to healthy controls). Of the 28 candidates, the strongest new target to emerge was homeodomain interacting kinase (HIPK1), which suppresses T cell activation and is within the PTPN22 locus tagged by rs6679677. This locus includes an enhancer element that contacts the HIPK1 promoter, and HIPK1 shows decreased expression in JIA CD4+ T cells when compared to controls. Gene Ontology terms associated with HIPK1 were overrepresented among the differentially expressed genes between JIA and controls and PML, a known co-regulator of HIPK1, showed a similar suppressed gene expression profile. Two downstream transcription factors of HIPK1, TP53 and GATA4, showed enriched binding patterns near the promoters of JIA up-regulated genes. Taken together, these data suggest a pathogenic role for HIPK1 in JIA and make it a prime candidate for therapeutic modulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信