Marta Hoffman-Sommer, Natalia Piłka, Anna Anielska-Mazur, Julita Nowakowska, Małgorzata Kozieradzka-Kiszkurno, Cezary Pączkowski, Małgorzata Jemioła-Rzemińska, Kamil Steczkiewicz, Yasin Dagdas, Ewa Swiezewska
{"title":"The TRAPPC8/TRS85 subunit of the Arabidopsis TRAPPIII tethering complex regulates endoplasmic reticulum function and autophagy.","authors":"Marta Hoffman-Sommer, Natalia Piłka, Anna Anielska-Mazur, Julita Nowakowska, Małgorzata Kozieradzka-Kiszkurno, Cezary Pączkowski, Małgorzata Jemioła-Rzemińska, Kamil Steczkiewicz, Yasin Dagdas, Ewa Swiezewska","doi":"10.1093/plphys/kiaf042","DOIUrl":null,"url":null,"abstract":"<p><p>Transport protein particle (TRAPP) tethering complexes are known for their function as Rab GTPase exchange factors. Two versions of the complex are considered functionally separate: TRAPPII, an activator of the Rab11 family (RabA in plants) GTPases that function in post-Golgi sorting, and TRAPPIII, activating Rab1 family (RabD in plants) members that regulate endoplasmic reticulum (ER)-to-Golgi trafficking and autophagy. In Arabidopsis (Arabidopsis thaliana), the TRAPPIII complex has been identified and its subunit composition established, but little is known about its functions. Here, we found that binary subunit interactions of the plant TRAPPIII complex are analogous to those of metazoan TRAPPIII, with the 2 large subunits TRAPPC8 and TRAPPC11 linking the TRAPP core and the small C12 to C13 dimer. To gain insight into the functions of TRAPPIII in plants, we characterized 2 A. thaliana trappc8 mutants. These mutants display abnormalities in plant morphology, particularly in flower and seed development. They also exhibit autophagic defects, a constitutive ER stress response, and elevated levels of the ER lipid dolichol (Dol), which is an indispensable cofactor in protein glycosylation. These results indicate that plant TRAPPC8 is involved in multiple cellular trafficking events and suggest a link between ER stress responses and Dol levels.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"197 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transport protein particle (TRAPP) tethering complexes are known for their function as Rab GTPase exchange factors. Two versions of the complex are considered functionally separate: TRAPPII, an activator of the Rab11 family (RabA in plants) GTPases that function in post-Golgi sorting, and TRAPPIII, activating Rab1 family (RabD in plants) members that regulate endoplasmic reticulum (ER)-to-Golgi trafficking and autophagy. In Arabidopsis (Arabidopsis thaliana), the TRAPPIII complex has been identified and its subunit composition established, but little is known about its functions. Here, we found that binary subunit interactions of the plant TRAPPIII complex are analogous to those of metazoan TRAPPIII, with the 2 large subunits TRAPPC8 and TRAPPC11 linking the TRAPP core and the small C12 to C13 dimer. To gain insight into the functions of TRAPPIII in plants, we characterized 2 A. thaliana trappc8 mutants. These mutants display abnormalities in plant morphology, particularly in flower and seed development. They also exhibit autophagic defects, a constitutive ER stress response, and elevated levels of the ER lipid dolichol (Dol), which is an indispensable cofactor in protein glycosylation. These results indicate that plant TRAPPC8 is involved in multiple cellular trafficking events and suggest a link between ER stress responses and Dol levels.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.