Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yitong Liu, Shuangrong Liu, Yanjun Jing, Jialong Li, Rongcheng Lin
{"title":"Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis.","authors":"Yitong Liu, Shuangrong Liu, Yanjun Jing, Jialong Li, Rongcheng Lin","doi":"10.1007/s11103-025-01559-9","DOIUrl":null,"url":null,"abstract":"<p><p>Seed dormancy enables plants to delay germination until conditions are favorable for the survival of the next generation. Seed dormancy and germination are controlled by a combination of external and internal signals, in which light and ethylene act as critical regulators. However, how light and ethylene are interlinked to control these two processes remains to be investigated. Here, we show that ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), promote seed germination under light. Light facilitates the conversion of ACC to ethylene, in which phytochrome B (phyB) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) are functionally required. ACC oxidases (ACOs) catalyze the conversion of ACC to ethylene, among which ACO1 is specifically and predominantly expressed in imbibed seeds. Ethylene induces FHY3 protein accumulation in imbibed seeds, whereby FHY3 directly binds to ACO1 promoter and specifically mediates light-promoted ACO1 expression. Light promotes ACO1 protein accumulation. Overexpression of ACO1 significantly promotes seed germination, and almost completely restores the dormant defect of fhy3 loss-of-function mutants. In summary, this study reveals an ethylene-responsive regulatory cascade of phyB-FHY3-ACO1 that integrates external light input with internal factors to regulate seed dormancy and germination.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"44"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01559-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seed dormancy enables plants to delay germination until conditions are favorable for the survival of the next generation. Seed dormancy and germination are controlled by a combination of external and internal signals, in which light and ethylene act as critical regulators. However, how light and ethylene are interlinked to control these two processes remains to be investigated. Here, we show that ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), promote seed germination under light. Light facilitates the conversion of ACC to ethylene, in which phytochrome B (phyB) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) are functionally required. ACC oxidases (ACOs) catalyze the conversion of ACC to ethylene, among which ACO1 is specifically and predominantly expressed in imbibed seeds. Ethylene induces FHY3 protein accumulation in imbibed seeds, whereby FHY3 directly binds to ACO1 promoter and specifically mediates light-promoted ACO1 expression. Light promotes ACO1 protein accumulation. Overexpression of ACO1 significantly promotes seed germination, and almost completely restores the dormant defect of fhy3 loss-of-function mutants. In summary, this study reveals an ethylene-responsive regulatory cascade of phyB-FHY3-ACO1 that integrates external light input with internal factors to regulate seed dormancy and germination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信