Overexpression of plasma membrane SUT1 in poplar alters lateral sucrose partitioning in stem and promotes leaf necrosis.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-03-12 eCollection Date: 2025-03-01 DOI:10.1002/pld3.70023
Liang-Jiao Xue, Moh'd I Hozain, Christopher J Frost, Afraz Talebi, Batbayar Nyamdari, Kavita B Aulakh, Ran Zhou, Scott A Harding, Chung-Jui Tsai
{"title":"Overexpression of plasma membrane SUT1 in poplar alters lateral sucrose partitioning in stem and promotes leaf necrosis.","authors":"Liang-Jiao Xue, Moh'd I Hozain, Christopher J Frost, Afraz Talebi, Batbayar Nyamdari, Kavita B Aulakh, Ran Zhou, Scott A Harding, Chung-Jui Tsai","doi":"10.1002/pld3.70023","DOIUrl":null,"url":null,"abstract":"<p><p>In <i>Populus</i> and many other tree species, photoassimilate sucrose diffuses down a concentration gradient via symplastically connected mesophyll cells to minor vein phloem for long-distance transport. There is no evidence for apoplastic phloem-loading in <i>Populus</i>. However, plasma membrane sucrose transporters (SUT1 and SUT3) orthologous to those associated with apoplastic phloem loading are expressed in vascular tissues of poplar. While SUT3 functions in sucrose import into developing xylem, the role of SUT1 remains unclear. Here, we overexpressed <i>PtaSUT1</i> in <i>Populus tremula</i> x <i>P. alba</i> to examine the effects on sucrose partitioning in transgenic plants. Overall leaf sucrose levels were similar between wild type and transgenic lines. Stem sucrose levels were not changed in bark but were significantly reduced in the adjacent xylem, suggesting hindered intercellular sucrose trafficking from the phloem to the developing xylem. Fully expanded leaves of transgenic plants deteriorated prematurely with declining photosynthesis prior to severe necrotic spotting. Necrotic spotting advanced most rapidly in the distal portion of mature leaves and was accompanied by sharp hexose increases and sharp sucrose decreases there. Leaf transcriptome profiling and network inference revealed the down-regulation of copper proteins and elevated expression of copper microRNAs prior to noticeable leaf injury. Our results suggest ectopic expression of <i>PtaSUT1</i> altered sucrose partitioning in stems with systemic effects on leaf health and copper homeostasis mediated in part by sucrose-sensitive copper miRNAs.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 3","pages":"e70023"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In Populus and many other tree species, photoassimilate sucrose diffuses down a concentration gradient via symplastically connected mesophyll cells to minor vein phloem for long-distance transport. There is no evidence for apoplastic phloem-loading in Populus. However, plasma membrane sucrose transporters (SUT1 and SUT3) orthologous to those associated with apoplastic phloem loading are expressed in vascular tissues of poplar. While SUT3 functions in sucrose import into developing xylem, the role of SUT1 remains unclear. Here, we overexpressed PtaSUT1 in Populus tremula x P. alba to examine the effects on sucrose partitioning in transgenic plants. Overall leaf sucrose levels were similar between wild type and transgenic lines. Stem sucrose levels were not changed in bark but were significantly reduced in the adjacent xylem, suggesting hindered intercellular sucrose trafficking from the phloem to the developing xylem. Fully expanded leaves of transgenic plants deteriorated prematurely with declining photosynthesis prior to severe necrotic spotting. Necrotic spotting advanced most rapidly in the distal portion of mature leaves and was accompanied by sharp hexose increases and sharp sucrose decreases there. Leaf transcriptome profiling and network inference revealed the down-regulation of copper proteins and elevated expression of copper microRNAs prior to noticeable leaf injury. Our results suggest ectopic expression of PtaSUT1 altered sucrose partitioning in stems with systemic effects on leaf health and copper homeostasis mediated in part by sucrose-sensitive copper miRNAs.

杨树质膜SUT1过表达改变茎侧蔗糖分配,促进叶片坏死。
在杨树和许多其他树种中,光同化蔗糖通过叶肉细胞的交感连接沿浓度梯度向下扩散到小叶脉韧皮部进行长距离运输。没有证据表明杨树有外质体韧皮部负荷。然而,与外质体韧皮部负荷相关的质膜蔗糖转运蛋白(SUT1和SUT3)在杨树维管组织中表达。虽然SUT3在发育木质部的蔗糖输入中起作用,但SUT1的作用尚不清楚。在此,我们在白杨中过表达PtaSUT1,以研究其对转基因植物中蔗糖分配的影响。野生型和转基因系叶片总蔗糖水平相似。树皮的茎蔗糖水平没有变化,但相邻木质部的蔗糖水平显著降低,表明韧皮部向发育中的木质部的细胞间蔗糖运输受到阻碍。完全展开的转基因植株叶片在发生严重的坏死斑染前,光合作用下降,叶片过早退化。坏死点斑在成熟叶的远端发展最快,并伴有己糖急剧增加和蔗糖急剧减少。叶片转录组分析和网络推断显示,在叶片明显损伤之前,铜蛋白下调,铜microrna表达升高。我们的研究结果表明,PtaSUT1的异位表达改变了茎中的蔗糖分配,并在一定程度上通过对蔗糖敏感的铜mirna介导对叶片健康和铜稳态的系统性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信