Kassidy A Robinson, Victoria Augoustides, Tanaka Madenyika, Ryan C Sartor
{"title":"ALPHA: A High Throughput System for Quantifying Growth in Aquatic Plants.","authors":"Kassidy A Robinson, Victoria Augoustides, Tanaka Madenyika, Ryan C Sartor","doi":"10.1002/pld3.70048","DOIUrl":null,"url":null,"abstract":"<p><p>The need for more sustainable agricultural systems is becoming increasingly apparent. The global demand for agricultural products-food, feed, fuel and fiber-will continue to increase as the global population continues to grow. This challenge is compounded by climate change. Not only does a changing climate make it difficult to maintain stable yields but current agricultural systems are a major source of greenhouse gas emissions and continue to drive the problem further. Therefore, future agricultural systems must not only increase production but also significantly decrease negative environmental impacts. One approach to addressing this is to begin breeding and cultivating new plant species that have fundamental sustainability advantages over our existing crops. The Lemnaceae, commonly known as duckweeds, are one family of plants that have potential to increase output and reduce the negative environmental impacts of agricultural production. Herein we describe the Automated Lab-scale PHenotyping Apparatus, ALPHA, for high-throughput phenotyping of Lemnaceae. ALPHA is being used for selective breeding of one species, <i>Lemna gibba</i>, toward the goal of creating a new crop for use in sustainable agricultural systems. ALPHA can be used on many small aquatic plant species to assess growth rates in different environmental conditions. A proof of principle use case is demonstrated where ALPHA is used to determine saltwater tolerance of six different clones of <i>L. gibba</i>.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 3","pages":"e70048"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The need for more sustainable agricultural systems is becoming increasingly apparent. The global demand for agricultural products-food, feed, fuel and fiber-will continue to increase as the global population continues to grow. This challenge is compounded by climate change. Not only does a changing climate make it difficult to maintain stable yields but current agricultural systems are a major source of greenhouse gas emissions and continue to drive the problem further. Therefore, future agricultural systems must not only increase production but also significantly decrease negative environmental impacts. One approach to addressing this is to begin breeding and cultivating new plant species that have fundamental sustainability advantages over our existing crops. The Lemnaceae, commonly known as duckweeds, are one family of plants that have potential to increase output and reduce the negative environmental impacts of agricultural production. Herein we describe the Automated Lab-scale PHenotyping Apparatus, ALPHA, for high-throughput phenotyping of Lemnaceae. ALPHA is being used for selective breeding of one species, Lemna gibba, toward the goal of creating a new crop for use in sustainable agricultural systems. ALPHA can be used on many small aquatic plant species to assess growth rates in different environmental conditions. A proof of principle use case is demonstrated where ALPHA is used to determine saltwater tolerance of six different clones of L. gibba.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.