Karthick Chennakesavan, James Haorah, Thangavel Samikkannu
{"title":"piRNA/PIWI pathways and epigenetic crosstalk in human diseases: Molecular insights into HIV-1 infection and drugs of abuse.","authors":"Karthick Chennakesavan, James Haorah, Thangavel Samikkannu","doi":"10.1016/j.omtn.2025.102473","DOIUrl":null,"url":null,"abstract":"<p><p>P-element-induced wimpy (PIWI)-interacting RNAs (piRNAs) and PIWI proteins have long been studied in insects and germline cells for their roles in regulating transposable elements (TEs). However, emerging evidence suggests that piRNAs and PIWI proteins also play crucial roles in human diseases beyond gametocyte protection, and these molecules are implicated in the onset and progression of various human diseases, particularly those arising in somatic cells. Notably, piRNAs and PIWI proteins are increasingly recognized for their involvement in cancers, cardiovascular diseases, neurodegenerative disorders, and viral infections, including HIV. This review first provides an overview of piRNAs/PIWIs and their interactions with TEs and primary targets. We then explore the molecular mechanisms and signaling pathways through which piRNAs and PIWIs modulate human disease processes, focusing on neurodegeneration, cancers, and HIV. Special attention is given to the role of piRNA/PIWI complexes in regulating gene transcription, translation, and post-translational modifications in the context of disease. Additionally, we address emerging research into the role of piRNAs/PIWIs in HIV- and drug abuse or substance abuse-associated neurodegenerative diseases, highlighting existing knowledge gaps. Finally, we discuss future research directions to understand better the functions of piRNAs/PIWI proteins in human health and disease.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 1","pages":"102473"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
P-element-induced wimpy (PIWI)-interacting RNAs (piRNAs) and PIWI proteins have long been studied in insects and germline cells for their roles in regulating transposable elements (TEs). However, emerging evidence suggests that piRNAs and PIWI proteins also play crucial roles in human diseases beyond gametocyte protection, and these molecules are implicated in the onset and progression of various human diseases, particularly those arising in somatic cells. Notably, piRNAs and PIWI proteins are increasingly recognized for their involvement in cancers, cardiovascular diseases, neurodegenerative disorders, and viral infections, including HIV. This review first provides an overview of piRNAs/PIWIs and their interactions with TEs and primary targets. We then explore the molecular mechanisms and signaling pathways through which piRNAs and PIWIs modulate human disease processes, focusing on neurodegeneration, cancers, and HIV. Special attention is given to the role of piRNA/PIWI complexes in regulating gene transcription, translation, and post-translational modifications in the context of disease. Additionally, we address emerging research into the role of piRNAs/PIWIs in HIV- and drug abuse or substance abuse-associated neurodegenerative diseases, highlighting existing knowledge gaps. Finally, we discuss future research directions to understand better the functions of piRNAs/PIWI proteins in human health and disease.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.