A modified elastoplastic damage structural constitutive model of unsaturated Q3 undisturbed loess.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jichao Zhang, Xiaolei Chong, Zhihua Yao, Yazhi Wei, Mingliang Liu
{"title":"A modified elastoplastic damage structural constitutive model of unsaturated Q<sub>3</sub> undisturbed loess.","authors":"Jichao Zhang, Xiaolei Chong, Zhihua Yao, Yazhi Wei, Mingliang Liu","doi":"10.1038/s41598-025-91988-9","DOIUrl":null,"url":null,"abstract":"<p><p>The weakening of loess structure under hydro-mechanical effect is an important reason for collapsible deformation of loess. Therefore, when establishing the constitutive model of unsaturated loess, it is necessary to consider the influence of loess structure to truly reflect the mechanical characteristics. A modified elastoplastic damage structural constitutive model (MEDSCM) is proposed for unsaturated Q<sub>3</sub> undisturbed loess based on the modified Barcelona basic model (MBBM), assuming that the yield stress of undisturbed loess is a coupling of remolded loess and structure, and adopting the non-associated flow rule. The structural evolution equations of unsaturated Q<sub>3</sub> loess in loading and collapsing are introduced respectively, and obtained the constitutive model of soil skeleton in loading and collapsing. There are a total of 18 parameters for the loading model and 15 parameters for the collapsibility model, which are determined by mechanical tests on unsaturated loess. By comparing the triaxial compression and collapsible test data with the model calculation results, the accuracy of the model is verified, and progress has been made in describing the weak hardening characteristics of unsaturated loess. The research results provide a new attempt for further understanding the mechanical properties of loess.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8678"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91988-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The weakening of loess structure under hydro-mechanical effect is an important reason for collapsible deformation of loess. Therefore, when establishing the constitutive model of unsaturated loess, it is necessary to consider the influence of loess structure to truly reflect the mechanical characteristics. A modified elastoplastic damage structural constitutive model (MEDSCM) is proposed for unsaturated Q3 undisturbed loess based on the modified Barcelona basic model (MBBM), assuming that the yield stress of undisturbed loess is a coupling of remolded loess and structure, and adopting the non-associated flow rule. The structural evolution equations of unsaturated Q3 loess in loading and collapsing are introduced respectively, and obtained the constitutive model of soil skeleton in loading and collapsing. There are a total of 18 parameters for the loading model and 15 parameters for the collapsibility model, which are determined by mechanical tests on unsaturated loess. By comparing the triaxial compression and collapsible test data with the model calculation results, the accuracy of the model is verified, and progress has been made in describing the weak hardening characteristics of unsaturated loess. The research results provide a new attempt for further understanding the mechanical properties of loess.

Abstract Image

Abstract Image

Abstract Image

非饱和 Q3 无扰动黄土的修正弹塑性损伤结构组成模型。
水力作用下黄土结构的弱化是造成黄土湿陷变形的重要原因。因此,在建立非饱和黄土的本构模型时,必须考虑黄土结构的影响,才能真实反映其力学特性。基于修正的巴塞罗那基本模型(MBBM),假设原状黄土的屈服应力是重塑黄土与结构的耦合,采用非关联流动规则,提出了非饱和原状黄土Q3的修正弹塑性损伤结构本构模型(MEDSCM)。分别介绍了非饱和Q3黄土在加载和崩塌过程中的结构演化方程,得到了土体骨架在加载和崩塌过程中的本构模型。加载模型共有18个参数,湿陷模型共有15个参数,均由非饱和黄土的力学试验确定。通过三轴压缩和湿陷试验数据与模型计算结果的对比,验证了模型的准确性,在描述非饱和黄土弱硬化特征方面取得了进展。研究结果为进一步认识黄土的力学性质提供了新的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信