{"title":"αKG-induced oxidative stress and mTOR inhibition as a therapeutic strategy for liver cancer.","authors":"Sung Kyung Choi, Myoung Jun Kim, Jueng Soo You","doi":"10.1007/s12032-025-02653-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the availability of targeted therapies, liver cancer remains a severe health burden. The need for adjuvant therapy to improve treatment efficacy and prevent recurrence is emerging. Alpha-ketoglutarate (αKG) is an intermediate in the tricarboxylic acid cycle and a cofactor for various oxygenases. A critical role of this multifunctional metabolite has started to be revealed in physiological and pathological conditions. We found that αKG exerts various anti-tumor effects in liver cancer cells. Our kinetic transcriptome study suggested that increasing reactive oxygen species and inhibiting mTORC1 signaling underlies. Indeed, αKG treatment elevated oxidative stress and induced DNA damage, presumably caused by early downregulation of the antioxidant gene SLC7A11. Further, we validated impaired mTOR signaling and decreased cellular energy production. This unique mechanism underscores αKG's potential as a liver cancer therapy by harnessing oxidative stress and disrupting metabolic signaling. These findings could provide valuable insights into further exploration of αKG as a promising therapeutic agent in liver cancer.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"105"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02653-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the availability of targeted therapies, liver cancer remains a severe health burden. The need for adjuvant therapy to improve treatment efficacy and prevent recurrence is emerging. Alpha-ketoglutarate (αKG) is an intermediate in the tricarboxylic acid cycle and a cofactor for various oxygenases. A critical role of this multifunctional metabolite has started to be revealed in physiological and pathological conditions. We found that αKG exerts various anti-tumor effects in liver cancer cells. Our kinetic transcriptome study suggested that increasing reactive oxygen species and inhibiting mTORC1 signaling underlies. Indeed, αKG treatment elevated oxidative stress and induced DNA damage, presumably caused by early downregulation of the antioxidant gene SLC7A11. Further, we validated impaired mTOR signaling and decreased cellular energy production. This unique mechanism underscores αKG's potential as a liver cancer therapy by harnessing oxidative stress and disrupting metabolic signaling. These findings could provide valuable insights into further exploration of αKG as a promising therapeutic agent in liver cancer.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.