Fe2O3-rice straw carbon dot composite for simultaneous electrochemical detection of dopamine and salbutamol.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nguyen Van Hop, Nguyen Le My Linh, Vo Chau Ngoc Anh, Do Mai Nguyen, Tran Thanh Tam Toan
{"title":"Fe<sub>2</sub>O<sub>3</sub>-rice straw carbon dot composite for simultaneous electrochemical detection of dopamine and salbutamol.","authors":"Nguyen Van Hop, Nguyen Le My Linh, Vo Chau Ngoc Anh, Do Mai Nguyen, Tran Thanh Tam Toan","doi":"10.1039/d5na00065c","DOIUrl":null,"url":null,"abstract":"<p><p>A novel electrochemical sensor was developed using a composite of iron oxide (Fe<sub>2</sub>O<sub>3</sub>) and rice straw-based carbon dots (RSCD) for the simultaneous detection of dopamine (DPM) and salbutamol (SBT). By modifying a glassy carbon electrode (GCE) with the synthesized composite, the sensor achieved detection limits of 0.02 μM for DPM and 0.03 μM for SBT, with a linear range extending from 0.1 to 92 μM. Differential pulse voltammetry (DPV) demonstrated the sensor's enhanced sensitivity, selectivity, and resolution of overlapping oxidation peaks, overcoming key limitations of existing methods. Practical applications in neurotransmitter monitoring and food safety were validated using actual samples, highlighting the sensor's accuracy and reliability. This study introduces a scalable and cost-effective solution for electrochemical sensing with significant potential for broader societal impact.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00065c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel electrochemical sensor was developed using a composite of iron oxide (Fe2O3) and rice straw-based carbon dots (RSCD) for the simultaneous detection of dopamine (DPM) and salbutamol (SBT). By modifying a glassy carbon electrode (GCE) with the synthesized composite, the sensor achieved detection limits of 0.02 μM for DPM and 0.03 μM for SBT, with a linear range extending from 0.1 to 92 μM. Differential pulse voltammetry (DPV) demonstrated the sensor's enhanced sensitivity, selectivity, and resolution of overlapping oxidation peaks, overcoming key limitations of existing methods. Practical applications in neurotransmitter monitoring and food safety were validated using actual samples, highlighting the sensor's accuracy and reliability. This study introduces a scalable and cost-effective solution for electrochemical sensing with significant potential for broader societal impact.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信